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ABSTRACT

In this paper, we perform prediction of food readiness dur-
ing cooking by using deep convolutional neural networks on
thermal video data. Our work treats readiness prediction as
ultra-fine recognition of progression in cooking at a per-frame
level. We analyze the performance of readiness prediction for
eggs, pancakes, and bacon strips using two types of neural
networks: a classifier network that bins a frame into one of
five classes depending on how far cooking has progressed at
that frame, and a regressor network that predicts percentage
of cooking time spent at each frame. Our work provides clas-
sification accuracies of 98% and higher within one step of the
ground truth class using the classifier, and provides an aver-
age error of within 20 seconds for the elapsed time predicted
using the regressor when compared to ground truth.

Index Terms— deep convolutional neural networks, cook
time prediction, fine-grained, activity recognition

1. INTRODUCTION

The rapid spread of consumer capture devices such as RGB,
depth, and thermal cameras has increased the potential for the
use of these devices in understanding activities such as cook-
ing in everyday environments. There exists a significant body
of work in automating food recognition [1–8] from RGB cam-
eras motivated by applications in recommendation of healthy
food choices by ubiquitous devices, and robotic automation of
cooking activities. However, these approaches focus largely
on recognition from static images.

In this work, we perform temporal prediction of food
readiness on video data from thermal cameras by using deep
convolutional neural networks (CNNs). While there ex-
ist approaches to perform understanding of food related ac-
tivities such as cooking and preparation [9–12] from RGB
videos, these approaches either focus on coarse-grained ac-
tivity recognition where all frames in a single video are given
the same label, or fine-grained activity recognition, where a
single video comprises multiple unit actions such as ‘chop-
ping tomato’, ‘beating egg’, and ‘making omelet’, and sets
of frames corresponding to a single unit action are given the
same label. Our work treats temporal readiness prediction as

ultra-fine activity recognition, where individual frames of a
unit action receive different labels, with each label represent-
ing the amount of progression in cooking that has occurred at
that frame. Additionally, most existing approaches perform
recognition of the cooking activity after it is done, while our
work allows online prediction of future food readiness during
the cooking process.

We use thermal images captured by an FLIR Vue Pro 640
thermal camera in our work to leverage the rise in temper-
ature of the food item over individual frames during cook-
ing for readiness prediction. Thermal cameras are seeing
a growing application in non-destructive food quality anal-
ysis and assessment of internal temperature of meats for
food safety [13–18]. However, while the potential for ther-
mal imaging in food readiness understanding has been dis-
cussed [19], our approach is one of the first academic con-
tributions to perform frame-level ultra-fine prediction of food
readiness using thermal cameras. We perform per-frame pre-
diction of progression in cooking for actions uninterrupted by
human interaction, such as a pancake cooking on one side, an
egg fried sunny side up, and a bacon strip crisping in a pan.

We provide two approaches to perform temporal predic-
tion of readiness during cooking of pancakes, eggs, and ba-
con strips—the components of a traditional American break-
fast— using videos from the FLIR Vue Pro 640 thermal cam-
era. Our first approach treats prediction as a classification
problem, and uses a deep CNN classifier to provide discrete
labels to individual frames of the action. Frames in an early
cooking stage are classified as belonging to a lower class and
frames at a later stage as belonging to a higher class. We ob-
tain minute-level or half-minute level prediction using this ap-
proach. We train five-class classifiers for each food item, and
receive an average classification accuracy of 78.21%, 74.99%,
and 76.48% against ground truth class labels on datasets of
24 pancakes, 21 eggs, and 48 bacon strips cooked for 120
seconds, 300 seconds, and 300 seconds respectively. When
considering classification within one step of the ground truth
labels, we achieve accuracy of 98% and above.

Our second approach treats prediction as a regression
problem, and uses a deep CNN regressor to provide continu-
ous labels to individual frames. Each label represents the per-
centage of total cooking time spent at that frame, and provides
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Fig. 1. Three different captures of eggs, bacon, and pancakes
at various time intervals using the FLIR Vue Pro 640 thermal
camera. As shown in Cap-16 and Cap-21 for bacon, we retain
flawed samples as they represent real world shape deviations.

sub-minute or sub-half-minute prediction. We train separate
regressors for each food item, and receive an average regres-
sion error of 6.12 seconds, 17.4 seconds, and 18.9 seconds
for pancakes, eggs, and bacon strips. Using CNNs running
on GPU-equipped computers, we achieve per-frame classi-
fication or regression times well within real time rate, at 8
milliseconds per frame for 75×75 images. Using either ap-
proach, our work has the potential to enable real-time status
update to users on time left for cooking completion.

2. RELATED WORK

A large body of work exists on performing recognition of
food type from images, where the principal challenge is the
variety in appearance for the same category of food. Yang
et al. [7] provide an approach that extracts statistics of pair-
wise local features from soft labels for image pixels. Mat-
suda et al. [4] provide a two-step method to for multiple-food
recognition. The first step of their method detects candidate
regions by combining results of several region detectors. In
the second step, their method uses a feature-fusion approach
to perform recognition on bounding boxes of the candidate
regions. Yanai et al. [8] achieve 78.77% and 67.57% for
the UEC-FOOD100 and UEC-FOOD256 datasets by apply-
ing pre-trained and fine-tuned deep CNNs. They also provide
a real-time food recognition system [3] for mobile devices.
Kagaya et al. [2] use CNNs to classify ten food categories and
find that color features dominate the process of food recogni-
tion. Bossard et al. [1] compare random forests and CNNs
on 101 food categories. Unlike these approaches that perform
food type recognition on static images, our work performs
temporal prediction of food readiness using video.

Several approaches exist to use video from color (RGB)
cameras to perform fine-grained recognition of food cooking
and preparation activities. Rohrbach et al. [9] provide a novel
dataset containing 65 scripted cooking activities composited
of unit actions such as ‘move pan’, ‘cut onion’, ‘open egg
cup’, and ‘stir’. They evaluate the performance of articulated
pose tracks and holistic video features in detecting the unit
actions and in combining them to detect composite activities.

Fig. 2. Original images for bacon, egg, and pancake along
with the 10 random rotations and translations used to augment
the dataset and prevent the neural network from overfitting.

Ni et al. [10] use an iterative approach to infer the locations
of multiple objects involved in fine-grained activities using a
long-short term memory (LSTM) network. Lea et al. [11] pro-
vide segmental spatiotemporal CNNs for fine-grained recog-
nition of food preparation actions such as making a salad,
preparing a sandwich, and making coffee. They contribute
an algorithm to perform accelerated segmental inference. Lea
et al. [12] provide an improvement to [11] using temporal
convolutional networks to capture long-range patterns with
a hierarchy of temporal convolutional filters. While these ap-
proaches label groups of frames in a single unit action with
the same label, our work provides increased discrimination
within each unit action, by labeling individual frames within
the action as belonging to various stages during cooking using
the CNN classifier or as having a certain progression in per-
centage of cooking time using the CNN regressor. To obtain
ultra-fine recognition, our work uses a thermal camera instead
of the RGB cameras used in these approaches.

There exists a significant body of work on using thermal
imaging to understand food quality; a review of this work may
be found in [13] and [14]. Stajnko et al. [15] estimate the
number and diameter of apples in an orchard with thermal im-
ages of apple trees. Varith et al. [17] detect apple bruises dur-
ing the warming up process of fruits by using thermal images,
and obtain high accuracy due to differences in the thermal
conductivity between bruised and sound tissues. Chelladurai
et al. [16] use thermal images combined with pair-wise clas-
sification models developed by linear and quadratic discrimi-
nant analyses to detect fungal infection in stored wheat. Ibarra
et al. [18] combine thermal images of chicken with neural net-
works to predict the internal temperature of chicken during
cooking and for 3 minutes after cooking. While their work is
the closest to ours, they use a fully connected network where
the input nodes represent thermal intensities converted to tem-
perature for a single pixel. The task of elapsed time prediction
addressed by our work requires a simultaneous analysis of all
pixels in a frame, which we accomplish using CNNs.

3. DATA PREPARATION

Data Collection. We use an FLIR Vue Pro 640 thermal cam-
era to capture thermal images of bacon strips, eggs, and pan-
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Fig. 3. CNN architecture used in our work. Here, ‘Conv’ stands for the convolutional layer, ‘BN’ for batch normalization, and
‘GAP’ for global average pooling. The last 128-filter convolutional layer branches into either a 5-filter layer for the classifier or
a 1-filter layer for the regressor. We create and train separate CNNs for the classifier and the regressor.

cakes at 1 fps cooked on a Faberware 1500W double burner.
We record 16-bit images instead of 8-bit white-balanced im-
ages to accurately capture low and high thermal intensities.
To ensure consistency within each food item, we use pre-
packaged strips of bacon, cartons of grade A medium sized
eggs, and Betty Crocker Bisquick ready pancake mix poured
at the same level in 30mL plastic containers. Each sample of
a food item is cooked independently of the other. In Figure 1,
we show three different captures for egg, bacon and pancake
at various time intervals. We do not exclude flawed samples,
such as Cap-16 and Cap-21 in Figure 1 for bacon, as they
represent the shape deviations found in the real world.

We empirically determine the cooking time for each food
item by conducting an initial food readiness experiment.
Our food readiness experiment shows that it takes 300
seconds for a single strip of bacon to crisp on one side at a
temperature setting of 156◦C, 300 seconds for a single egg
to cook sunny side up at a temperature setting of 127◦C,
and 120 seconds for a single 30mL container of pancake
mix to cook on one side at a temperature setting of 127◦C.
Similar to several home-use electrical burners, the Faberware
burner automatically turns on and off the heating element to
maintain an even temperature. To ensure consistency across
captures, we start our capture process immediately after the
heating indicator switches off. Our final dataset consists of
48 strips of bacon, 21 eggs, and 24 pancakes, with a total of
14,400 frames for bacon, 6,300 frames for eggs, and 2,880
frames for pancakes.

Training and Test Data Generation. We generate training
and testing datasets by performing n-fold cross validation.
We create 12 folds for bacon with each fold consisting of 4
random bacon samples, 7 folds for eggs with each fold con-
sisting of 3 random egg samples, and 6 folds for pancakes
with each fold consisting of 4 random pancake samples. To
remove background pixels, we manually select a region of
interest around the burner for the bacon, eggs, and pancake
data and automatically crop all images. We resize each im-
age to 75×75 pixels to keep the training tractable and prevent
overfitting. Figure 1 shows original thermal images from the
sensor, and cropped and resized images.

Labels for CNNs. We provide two types of prediction ap-

proaches in this work, one that uses a CNN classifier to cate-
gorize frames into 5 stages, and one that use a CNN regressor
to predict the progression in cooking. For the CNN classifier,
we generate the label of each image by equally dividing the
total elapsed cooking time of each capture into 5 classes. For
the ultra-fine CNN regressor, the label for the ith frame with
frame number fi is generated as fi/N , where N is the total
number of frames in the capture.

Augmenting of Training Data. To improve the perfor-
mance of the CNNs and to prevent overfitting, we synthet-
ically augment the training dataset to 10 times the original
size by applying random affine transformations as suggested
in [20]. We perform random rotations between 0 and 60 de-
grees and random translations within an offset of ±9 pixels
horizontally and vertically to the original images. Example
training images after augmenting are shown in Figure 2.

4. CLASSIFICATION USING CONVOLUTIONAL
NEURAL NETWORKS

Network architecture. Figure 3 shows the architecture of
the CNNs used in our work. The network consists of two
repeated blocks, each of which has three layers that perform
convolution, batch normalization [21], and application of the
rectified linear unit (ReLU) activation function, followed by
a 2×2 max pooling layer. The first block uses a bank of 32
3×3 filters for convolution while the second block uses dou-
ble the number of 3×3 filters, i.e., 64 filters as recommended
in [20], [22], and [23]. The second block is followed by two
layers that perform convolution with 128 filters, batch nor-
malization, and ReLU application, with the first layer using
3×3 filters, and the second using 1×1 filters (i.e., a direct
weighting of the original input node). The classifier CNN
contains a penultimate layer with 5 1×1 convolutional filters
for the 5 classes, while the regressor CNN contains a penulti-
mate layer with a single 1×1 filter. At the output layer, instead
of using a fully connected layer after the last convolutional
layer, we use global average pooling [24] to minimize over-
fitting by reducing the number of parameters. The classifier
CNN uses the softmax function to convert the pooling results
into classification probabilities, while the regressor CNN pro-
vides the result of pooling as the final output.



Fig. 4. Ground truth classes and class probabilities predicted
using classifier CNN for various frames in bacon, egg, and
pancake sequences.

Training. We train both the classifier and the regressor
CNNs using back-propagation with Adam [25] as the adap-
tive gradient optimizer. We choose a batch size of 32 and we
train for 100 epochs. After each max pooling layer, we in-
clude dropout with probability of 25% to prevent overfitting.
For the classifier CNN, we use cross entropy as the loss func-
tion, while for the ultra-fine CNN regressor, we optimize the
mean square error during back-propagation. We implement
the architecture of both CNNs using Keras wrapped around
the TensorFlow [26] library with GPU support.

We perform training and testing using four GPU-equipped
computers, each containing 32GB of RAM and 500GB of
NVMe SSD storage. Two computers have NVIDIA GeForce
GTX 1080 Ti graphics processing units (GPUs) and AMD
Ryzen 1700X eight-core processor. The remaining two com-
puters have an Intel Core i7-4790K 4GHz four-core proces-
sor, with one having an NVIDIA GeForce GTX 980 GPU and
the other having an NVIDIA GeForce GTX 980 Ti GPU. For
each fold, the training phase takes on average around 2 hours.
During the testing phase, each image takes on average 8 mil-
liseconds for classification or regression enabling real-time
prediction of progression in cooking.

5. RESULTS

As shown in the second and third columns of Table 1, we eval-
uate the performance of the classifier CNN using two metrics:
top-1 accuracy, and accuracy in a sliding window of 3 ele-
ments. We define the sliding window of 3 as follows: if the
actual label is i, then prediction labels i − 1, i, and i + 1 are
considered correct. As shown by the confusion matrices in
Figure 6, the intuition of our sliding window of 3 metric is
based on the observation that a large number of misclassified
samples are located in neighboring classes. For example, for
bacon when the actual class is 2 it is primarily confounded

Fig. 5. Ground truth and elapsed time percentages predicted
using regressor CNN for various frames in bacon, egg, and
pancake sequences.

with class 1 and class 3. Our best top 1 accuracy is achieved
for pancake at 78.2%, followed by bacon at 76.5%, and egg
at 74.9%. As shown in Table 1, the sliding window of 3 ap-
proach improves the top 1 accuracy by 20.82% for pancake,
23.11% for egg, and 22.44% for bacon, to average accura-
cies of 98% and above. Figure 4 shows ground truth classes
and class probabilities for frames from a bacon, an egg, and
a pancake sequence. The class with the highest probability is
assigned the label for the corresponding input. The supple-
mentary material provides class probabilities for frames from
several video sequences used in our work.

The fourth column of Table 1 shows the mean absolute
error in using the regressor CNN to perform prediction of
the percentage of total cooking time that has elapsed at each
frame. In the fifth column, we report mean absolute error
in prediction of elapsed cooking time in seconds. For food
items with cook times within two minutes such as pancakes,
we demonstrate prediction of cooking times within an error
of 6.12 seconds on average. For food items with five minutes
of cooking time, such as eggs and bacon, we demonstrate pre-
diction of cooking times within an error of less than 20 sec-
onds on average. Figure 5 shows the ground truth and pre-
dicted elapsed time as percentages of the total cooking time
for frames from a bacon, an egg, and a pancake sequence.
The supplementary material provides predicted elapsed time
percentages for frames from several video sequences.

Figure 7 shows plots of the predicted time on a per-
frame basis for bacon strips (left), eggs (center), and pancakes
(right). The horizontal axis in each graph represents the num-
ber of frames elapsed (which at 1fps also corresponds to the
actual elapsed time). The vertical axis provides the predic-
tion. We show a graph of the ground truth elapsed time in red
(at the 45◦ line), the mean predicted time in black, plots one
standard deviation from the mean in dark gray, and plots of
the maximum and minimum times in light gray. The mean
plot follows the ground truth closely for pancakes, while for
eggs and bacon strips, the mean plots show a deviation in the
direction of under-predicting the time after 250 seconds. An



Datasets Classifier Accuracy Regressor Avg. Error
in Elapsed Time

Top 1 Sliding Win. 3 as Percentage in Seconds
Pancake 78.21% 99.03% 5.1%±2.19% 6.12±2.63

Egg 74.89% 98.00% 5.8%±1.18% 17.4±3.53
Bacon 76.48% 98.92% 6.3%±1.84% 18.9±5.53

Table 1. Accuracy in labeling of cooking progression (Slid-
ing Win. 3: accuracy in sliding window of 3 classes).

Fig. 6. Confusion matrices for top 1 classification (top row)
and sliding window of 3 classification (bottom row) for bacon,
eggs and pancakes.

explanation for this phenomenon is that after around 4 min-
utes of cooking, the bacon strips and eggs do not show a sig-
nificant change in thermal intensity. For typical consumers,
sunny side up eggs fried or bacon strips are considered done
within 4 minutes. While the maximum plots for bacon and
pancake, and the minimum plot for bacon show a significant
deviation from the mean, our data indicates that these are
outliers. For bacon strips, eggs, and pancakes respectively,
72.1%, 69.5%, and 73.1% of the predicted results lie within
one standard deviation of the mean, and 94.9%, 96.1%, and
94.8% of the predicted results lie within two standard devia-
tions of the mean.

6. DISCUSSION

We have presented two approaches in this paper to perform
prediction of food readiness using thermal video data by per-
forming ultra-fine recognition on a per-frame basis. Our first
approach treats prediction as a classification of frames into
five stages, and uses CNN classifiers to provide minute-level
prediction of status for eggs and bacons, and nearly half-
minute level predictions for pancakes. To achieve sub-minute
prediction, our second approach provides CNN-based regres-
sors to predict percentage of cooking time elapsed at each
frame. The classifier approach provides a classification ac-
curacy of 76.5% on average against the ground truth class,
and accurately predicts the correct class within one step of
the ground truth upwards of 98% of the time. The regressor

approach provides average errors within 20 seconds.
One of the main limitations of our approach is that it is

not sensitive to the deviation in underlying burner behavior.
Figure 8 shows examples of results with low and high accu-
racies, where images with high deviation from ground truth
show high deflection in burner intensities from expected val-
ues. The effect is most pronounced for the first two bacon im-
ages in Figure 8(b). For the pancakes, the deviation in burner
temperature induces them to be overcooked or undercooked
(first and second pancakes in Figure 8(a)), showing that the
predicted results do reflect real-world behavior. As part of
future work, we are interested in developing approaches that
explicitly model the burner behavior. Another reason for error
is deviation in food shape from the average. For instance, the
first bacon strip in Figure 8(a) is torn, and the first two eggs in
Figures 8(a) and 8(b) have the yolk offset to the edge instead
of being in the center. In future work, we will investigate
techniques for spatially aware prediction of food readiness.

One area of future work is to leverage the strengths of
the classifier in providing high accuracy within 1 step of the
ground truth label to improve the frame-level prediction of
the regressor by having the regressor depend on the results
of the classifier, leading to a merged architecture for regres-
sion. While we use image sizes of 75×75 to keep the training
tractable, we are interested in performing empirical evalua-
tion of change in classification and regression accuracy and
performance by altering the image sizes between ultra low
resolution to very high resolution, with proportional synthetic
augmenting of the data. In future work, we will provide an
expanded dataset to include foods with a variety of textures,
viscosities, and cooking times. We will also investigate the
effect of differences in taste preferences for food readiness,
and impact of image noise due to real-world effects such as
fumes or vapor from cooking, food splatter on the camera,
and built-in sensor noise.
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