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ABSTRACT

As virtual reality (VR) systems become prevalent in domains such as
healthcare and education, sensitive data must be protected from at-
tacks. Password-based techniques are circumvented once an attacker
gains access to the user’s credentials. Behavior-based approaches
are susceptible to attacks from malicious users who mimic the ac-
tions of a genuine user or gain access to the 3D trajectories. We
investigate a novel attack where a malicious user obtains a 2D video
of genuine user interacting in VR. We demonstrate that an attacker
can extract 2D motion trajectories from the video and match them
to 3D enrollment trajectories to defeat behavior-based VR security.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality; Security
and privacy—Security services—Authentication—Biometrics

1 INTRODUCTION

VR applications in domains such as healthcare, teleoperation, and
education are expected to store sensitive personal data on the users
and must be protected from access by malicious agents. A large
body of research has emerged on performing identification and au-
thentication of users by tracking the behavior of users, i.e., the 3D
trajectories of the VR headset and hand controllers, and using them
as a signature to provide security [2–4, 6–8]. Manual methods to
defeat behavior-based security have been evaluated [5], however
the complexity of human actions renders manual mimicry challeng-
ing [8]. We investigate a new attack scenario where a malicious
user gains access to 2D video capture of a user performing VR inter-
actions and uses the video for automated defeat of behavior-based
security in VR. Web-based closed circuit television monitoring sys-
tems or IP cameras are commonplace in schools, offices and clinics,
and contain security vulnerabilities. We assess the potential of per-
forming a video-based attack, by matching 2D video performance
of a user to 3D trajectories for a set of users acquired during an
enrollment phase. The enrollment trajectories would ordinarily be
used by a genuine matcher to match against runtime 3D trajecto-
ries from a VR device. Our approach makes the assumption that
the malicious agent has no physical access to the user’s environ-
ment. The malicious agent can only perform remote attacks and
can inject a rogue matching algorithm into the system. Using the
videos and 3D trajectories in the 41-subject multi-system dataset of
Miller et al. [6, 7], we demonstrate maximum accuracies of 82.2%,
43.2%, and 34.4% at same-system/same-session, same-system/cross-
session, and cross-system attack. While accuracies are still low,
they indicate potential for rogue matching algorithms to circumvent
behavior-based security mechanisms in VR.

*e-mail: romille@clarkson.edu
†e-mail:nbanerje@clarkson.edu
‡e-mail:sbanerje@clarkson.edu

Siamese 
Neural 

Network

Geometric 
Projection 
Matching

3D Trajectory 
Library

Input 2D 
Video

Processed 
2D Video

Matched 3D 
Trajectory

Closest 
Projection 

in 2D

Extracted 2D 
Trajectory

3D Trajectory 
Library

Matched 3D 
Trajectory

Actual 3D 
Trajectory

User 13 User 13User 13

Input 2D 
Video

Siamese 
Neural 

Network

Geometric 
Projection 
Matching

3D Trajectory 
Library

Input 2D 
Video

Processed 
2D Video

Matched 3D 
Trajectory

Closest 
Projection 

in 2D

Extracted 2D 
Trajectory

3D Trajectory 
Library

Matched 3D 
Trajectory

Actual 3D 
Trajectory

User 13 User 13User 13

Input 2D 
Video

Match

3D Trajectory 
Library

Siamese 
Neural 

Network

Geometric 
Projection 
Matching

3D Trajectory 
Library

Input 2D 
Video

Processed 
2D Video

Matched 3D 
Trajectory

Closest 
Projection 

in 2D

Extracted 2D 
Trajectory

3D Trajectory 
Library

Matched 3D 
Trajectory

Actual 3D 
Trajectory

User 13 User 13User 13

Input 2D 
Video

Siamese 
Neural 

Network

Geometric 
Projection 
Matching

3D Trajectory 
Library

Input 2D 
Video

Processed 
2D Video

Matched 3D 
Trajectory

Closest 
Projection 

in 2D

Extracted 2D 
Trajectory

3D Trajectory 
Library

Matched 3D 
Trajectory

Actual 3D 
Trajectory

User 13 User 13User 13

Input 2D 
Video

Input 2D 
Video

Extracted 2D 
Trajectory

Closest 2D 
Projection

Actual 3D 
Trajectory

Siamese 
Neural 

Network

Geometric 
Projection 
Matching

3D Trajectory 
Library

Input 2D 
Video

Processed 
2D Video

Matched 3D 
Trajectory

Closest 
Projection 

in 2D

Extracted 2D 
Trajectory

3D Trajectory 
Library

Matched 3D 
Trajectory

Actual 3D 
Trajectory

User 13 User 13User 13

Input 2D 
Video

Matched 3D 
Trajectory

Figure 1: We use external video to attack on behavior-based VR
security mechanisms by extracting 2D trajectories from the video and
matching to 3D library trajectories.

2 METHOD

We use the Miller et al. [6, 7] dataset, which consists of 41 subjects
performing a ball throwing task using three VR systems—the HTC
Vive and Vive Cosmos, and the Oculus Quest. Each user provides
2 sessions per system, with 10 throws per session. The dataset con-
tains 3D trajectory tracks for the headset and hand controllers, and
external video recorded at 240 FPS and 1280×960 resolution using a
GoPro Hero 7 camera. The GoPro video acts as the runtime data that
has been obtained by a malicious agent. We eliminate data from the
first Quest session as GoPro videos were incorrectly captured for 4
users. Our matching approach for the attacker estimates a projection
matrix that best aligns the 3D trajectory of the right controller to the
motion of the user’s right hand in the video obtained by tracking the
right controller over video frames. We perform the matching using
Cosmos video, as the bright Cosmos controller enables color-based
tracking, in comparison to the Quest and Vive controllers whose
black color resembles dark hair, clothing, or background elements.

We automatically extract a single point representing an anchor for
the controller in each Cosmos video frame. We initialize a search
location for the controller by automatically aligning a skeleton to the
user using OpenPose [1], extracting the positions of the right wrist
and elbow, and aligning rectangular regions as shown in Figure 2 by
comparing the wrist and elbow confidences to a threshold. To extract
the controller, we retain search region pixels with hue ∈ [160◦,300◦],
saturation ∈ [0,145], and value > 195. To remove non-controller
pixels with similar intensities, if the variance of the pixel coordinates
exceeds 12,500, we cluster the pixel coordinates using k-means into
two groups, and pick the group with cluster mean closest to the prior
frame anchor as the current frame anchor. Otherwise, we assume the
region lacks non-controller pixels, and return the mean of the pixel
coordinates as the current frame anchor. Figure 2(e) shows cluster
centers for an example search region in Figure 2(d). We concatenate
all anchors into a single 2D trajectory as shown in Figure 2(f).

The 3D trajectories may lack perfect alignment 2D video from the
user due to start frame misalignments and variable start times. We up-
sample the 3D and 2D trajectories to have 270 points per trajectory,
set up a sliding window of size F = 240 frames over the 2D trajec-
tory, and match the sliding window to a fixed window extracted from
the 3D trajectory. To address variable start times, we use two fixed
windows from the 3D trajectory—one that starts at the first frame,
and one that starts 20 frames into the motion. Given a fixed 3D win-
dow and a sliding 2D window, we perform random sample consensus
(RANSAC) over 100 iterations to estimate a projection matrix P of
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Figure 2: Search regions generated when OpenPose provides high
confidence detections for (a) both wrist and elbow, (b) wrist only, and
(c) elbow only. The confident wrist and elbow are marked in red and
green respectively. (d) Extracted search region and (e) cluster pixels
in white and optimal cluster center in red. (f) Film strip with extracted
trajectory plotted as evolving over task.

size 3×4 that optimally lines the 3D window with the 2D window.
Within each RANSAC iteration, we randomly sample a set S of 6
points to estimate P, where S ⊂ {1,2, · · · ,F}. We estimate P as the
values for its rows pT

1 , pT
2 , and pT

3 that optimize the algebraic error
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)2, where Xi represents
the homogeneous coordinates for the ith 3D point, ui and vi represent
the coordinates and for the corresponding 2D point xi. We project
each point Xi, i ∈ {1,F} in the 3D trajectory into 2D by computing
the 2D coordinates
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. We retain the value

of P that provides the lowest inlier error over all RANSAC iterations
containing n or more inliers, i.e., points for whom the re-projection
error ei =

(
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)2
+
(
pT

2 Xi/pT
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)2 falls below a
threshold of 50 pixels. For each inlier set, we re-estimate P by
optimizing the algebraic error over the inliers, and obtain the inlier
error by summing ei over all inliers. The lowest inlier error over
all RANSAC iterations with inlier count above 220, all 2D sliding
windows, and all fixed 3D windows forms the distance between
the 3D trajectory and the 2D video. The typical use of RANSAC
requires a precise underlying geometric model which does not exist
for trajectories where the motion is mismatched from the video. In
several cases of non-matching trajectories, RANSAC is unable to
obtain return a projection matrix where the error for 220 or more
points falls below 50 within 100 iterations. In this case, we set the
projection error to be a large value at 1020.

3 RESULTS

Table 1 shows results by matching 2D videos from the two Cos-
mos sessions against 3D enrollment trajectories from the same and
different Cosmos sessions, from two Vive sessions, and from the
second Quest session. ‘Cn’, ‘Vn’, and ‘Qn’ represent data from the
nth session of the Cosmos, Vive, and Quest respectively. Enrollment
and query rows represent sessions from which 3D enrollment tra-
jectories and 2D query videos are obtained. We analyze success of
defeating a VR application when an attacker replaces a behavior-
based security mechanism with the proposed matching approach
in order to present videos that enable the attacker to masquerade
as the genuine user for identification, and to remain verified for
authentication. We perform identification by labeling the trajectory
with the identity of the user with the nearest matching 3D trajectory
in the enrollment set. We perform authentication of a 2D video
against a particular 3D trajectory by comparing all video-trajectory
distances against a threshold. We show identification accuracies and
equal error rate (EER) for authentication obtained by computing
false accept and false reject rates using the best matches over all
throws for each enrollment user. We obtain the highest accuracy of

Enr. C1 C1⋆ C2 C2⋆ C1 C2 V1 V1 V2 V2 Q2 Q2
Query C1 C1 C2 C2 C2 C1 C1 C2 C1 C2 C1 C2

Acc. 79.0 54.6 82.2 59.5 43.2 37.3 31.7 28.3 32.7 34.4 24.7 22.9
EER 14.1 21.2 11.4 15.4 23.6 23.6 27.1 26.3 25.9 26.0 31.7 30.7
Table 1: Results in percentages showing average accuracy (Acc.) and
EER. ⋆We remove the precise trajectory corresponding to the query
video from the enrollment (Enr.) set to analyze success by comparing
against other trajectories provided by the user on the same day.

82.2% and lowest EER of 11.4% when Cosmos video is matched to
Cosmos trajectories in the second session. The starred columns in
Table 1 provide results when we remove the trajectory corresponding
to each presented query video from the enrollment set, in which case
accuracy drops to 54.6% and 59.5% for same day Cosmos matching,
and EER rises to minimum of 15.4%. Cross-day Cosmos accuracies
drop to slightly over 37-43%, and EER rises to 23.6%. Cross-system
accuracies drop to 28-34% for the Vive-Cosmos pair and 22-24%
using the Quest-Cosmos pair. In cross-system matching, lowest EER
of 26.0% is obtained using session 2 Cosmos and Vive data, with
Quest-Cosmos EER values being higher, mirroring identification.

4 DISCUSSION

Overall, our results indicate that behavior-based security systems
that rely on a single system during enrollment and use are more
vulnerable. Vulnerability is increased when enrollment and use
occur on the same day, for instance if an attacker is able to determine
when a new user is being enrolled or if library trajectories are being
updated due to user profile changes. In future, we will explore
learning-based methods to improve accuracy of cross-session and
cross-system matching of 3D trajectories to features extracted from
2D video. We will tie object detection and tracking approaches
to localize and track the VR hand controllers for 2D trajectory
extraction. Our approach assumes that the attacker can inject a
rogue matching algorithm. Our future work will provide automated
methods to synthesize 3D trajectories from 2D videos to enable
attacks independent of the matching method.
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