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Abstract—In this paper, we use a thermal camera to distinguish
hard and soft swipes performed by a user interacting with a
natural surface by detecting differences in the thermal signature
of the surface due to heat transferred by the user. Unlike prior
work, our approach provides swipe pressure classifiers that are
user-agnostic, i.e., that recognize the swipe pressure of a novel
user not present in the training set, enabling our work to be
ported into natural user interfaces without user-specific calibra-
tion. Our approach generates average classification accuracy of
76% using random forest classifiers trained on a test set of 9
subjects interacting with paper and wood, with 8 hard and 8
soft test swipes per user. We compare results of the user-agnostic
classification to user-aware classification with classifiers trained
by including training samples from the user. We obtain average
user-aware classification accuracy of 82% by adding up to 8
hard and 8 soft training swipes for each test user. Our approach
enables seamless adaptation of generic pressure classification
systems based on thermal data to the specific behavior of users
interacting with natural user interfaces.

Index Terms—thermal, swipe pressure, hard, soft, natural user
interface, natural surface interaction

I. INTRODUCTION

Natural user interfaces involving users interacting with
content projected on real-world surfaces and objects are gain-
ing significant interest due to their impact in ubiquitizing
augmented reality (AR) applications. While traditional touch
devices consist of sensor-equipped touch surfaces, the key idea
behind natural surface interaction is to avoid instrumentation
of the surfaces interacted with, as surface-intrusive instrumen-
tation is expensive, has the potential to mar the aesthetics of
the surface, and may not integrate seamlessly with the surface
materials and construction. As a result, approaches in natural
user interaction use non-intrusive cameras in the environment
to recognize user interactions with projected content. While
several approaches already exist to use RGB or depth cameras
to perform swipe detection and tracking [1], [2], [3], there
is currently a growing interest in using thermal cameras for
detecting user gestures on surfaces [4], [5], [6], [7], [8], [9],
as the change in thermal signature of the surface by heat
transfer from the fingers and hands of a user introduces a
strong contrast in a thermal image which can be used to extract
the gesture pattern.

In this work, we use thermal cameras to detect differences in
pressure applied by the fingers on a surface for pressure-based
interactions in natural user interfaces. Using pressure-based
interactions, actions with the same motions such as swipe-
based screen change and drag-and-drop can be distinguished

based on differences in pressure. A swipe-based screen change
may be performed using a soft swipe, while a drag-and-drop
may be performed using a hard swipe, thereby reducing the
latency induced by actions such as selecting the item to be
dragged, and double or long tapping. With increasing pressure
from the fingers of a user, the amount of heat transferred to
the surface from the finger rises, enabling pressure changes
to be identified by detecting differences in thermal intensity.
While approaches exist to provide pressure-based interactions
in multi-touch surfaces [6], [7], these approaches require the
user to pre-provide hard, medium, and soft samples to calibrate
the pressure-sensitivity of the interface to that user by training
a user-specific pressure classifier. Given the vast diversity in
the thermal behavior of natural surfaces due to differences in
ambient temperature and heat transfer rate, performing a user-
specific calibration for every surface interacted with can prove
infeasible for natural user interaction.

We investigate the ability of classification algorithms trained
on hard and soft swipes from a group of subjects to be user-
agnostic, i.e., to recognize the swipe pressure of a novel user
not present in the training set, for materials such as wood and
paper. The end goal of our work is to enable seamless natural
surface interaction without prior user-specific calibration. Our
dataset consists of 9 users with 16 hard and 16 soft swipes per
user. We use leave-one-out cross-validation to train random
forest classifiers using all 16 hard and 16 soft swipes of
8 training users during each training fold, and we run the
classifier on a test set of 8 hard and 8 soft swipes of the
left out user. Our work provides an average classification
accuracy of 76% for random forests trained using swipes on
paper and wood together. When the two materials are treated
separately, our approach provides nearly the same accuracy
for paper, i.e., 77%, and an accuracy of 88% for wood.
We also perform partial swipe classification and reach 77%
classification accuracy using random forests trained on both
materials within 40% of the swipe enabling early detection of
pressure for low latency in interaction.

As a user interacts with the natural user interface, it is de-
sirable to personalize the interface to the user’s behavior over
time. We perform comparisons of the user-agnostic classifica-
tion discussed above to user-aware classification using random
forests trained by adding increasing numbers of samples from
a training set of 8 hard and 8 soft swipes for the test user. The
training set and test set for the test user are mutually exclusive.
We reach an average accuracy of 82% for both paper and
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Fig. 1. (a) Thermal intensity image of a user performing a swipe recorded by an overhead FLIR Vue Pro 640 thermal camera. (b) Sample frames from a
video of a swipe, showing the start of the swipe (left), end of the swipe (center), and swipe after the user removes the hand (right). (c) Thresholded finger
swipe image (left), thresholded image with hand removed using morphological operations (center), and masked finger swipe (right). (d) Accumulative intensity
image (top) and quadratic band fit to accumulative image (bottom).

wood, 87% for paper alone and 91% for wood alone using 8
hard and 8 soft training swipes. Our approach demonstrates
that we can reach comparable accuracies of 81% for paper
and wood, 84% for paper, and 89% for wood by adding
8 hard swipes alone, enabling a user-targeting of agnostic
classifiers by solely probing hard swipes. By adding increasing
amounts of data, our approach can be used in natural user
interfaces to perform adaptation of a generically trained system
to the behavior of the specific user without interfering with the
interactions of the user.

II. RELATED WORK

There exists a growing body of work on using thermal
cameras to perform swipe tracking in natural surface inter-
actions. These methods do not face the challenge of tracking
fingers overlaid by projected content that approaches using
color cameras (e.g., [1], [2], [3]) need to address, as they rely
on the strong heat signature of humans in comparison with the
ambient surrounding. Oka et al. [4] use an overhead thermal
camera to detect the hand, arm, and fingertips of a user as high
intensity regions in the thermal image, to track the fingertip
trajectories using Kalman filtering, and to recognize gestures.
Iwai and Sato [5] use a thermal camera installed behind a
thin paper-based interaction surface to detect swipes using
the heat transferred by the user to the paper. Kurz [8] uses
a thermal camera attached to a tablet to detect interactions
from users on natural surfaces for augmented reality. Palovuori
and Rakkolainen [9] use a low-cost thermal imager to track
fingertips near the imager for immaterial interaction. These
approaches do not perform detection of swipe pressure.

While the approach of Larson et al. [6], also used by Saba
et al. [7], performs swipe pressure classification, it trains a
decision tree based pressure detector on the user prior to the
user’s interactions. Their approach requires re-calibration of
the pressure detection to every user who uses their system.
In contrast, our classification approach recognizes the swipe
pressure of novel users not present in the training set.

III. CAPTURE SETUP AND DATA COLLECTION

We use an FLIR Vue Pro 640×512 30fps thermal camera
with a 9mm lens mounted overhead on a tripod and facing

downwards toward the surface of interest to capture the user
swipes. We use two surfaces—a sheet of white paper and a
plywood board. We record each user swipe as a video using the
MJPEG format and a linear white-hot temperature encoding.
For our experiments, we recruited 9 test subjects, 7 male and
2 female, with ages ranging between 18 and 37 years, and
with prior experience in using touch based devices. All 9 test
subjects used their right hand as the dominant hand. During
the data collection phase, we asked each user to perform 16
soft (i.e. low pressure) and 16 hard (i.e. high pressure) swipes
on the surface of interest. We asked users to wait 5 seconds
between each soft swipe and 10 seconds between each hard
swipe to allow any remnant thermal signature to dissipate from
the surface. To replicate real world natural user interfaces, we
asked users to use any finger and perform swipes of any length
or direction. Given the user data, we perform manual spatial
cropping of the recorded video to retain the region around the
swipe, and we automatically segment the user data into 32
independent samples, each containing a single swipe. With 32
samples per user for 9 users on 2 materials, we obtain a total
of 576 videos. Figure 1(a) shows the thermal image captured
by the FLIR Vue Pro camera encoded using the jet color map,
and Figure 1(b) shows three frames from a user swipe cropped
around the region of the swipe.

IV. SWIPE PATH ESTIMATION

A. Swipe Extraction by Hand Removal

We perform static background subtraction to remove mo-
tionless objects and we threshold the thermal image as shown
in the left image of Figure 1(c). We use a threshold of 4 on
a scale of 0 to 255. We then remove the hand as shown in
Figure 1(c) using morphological image processing as the hand
represents the hottest object in the scene and overshadows the
thermal intensity of the swipes. First, we use a 3×3 square
structural element to apply opening and closing operations to
the image for salt-and-pepper noise removal. Then, we dilate
the image using an 11×11 square structural element to fill in
the gaps between the fingers of an open hand so that long
narrow structures only correspond to swipes as opposed to
fingers. We remove the hand by first computing an image



Fig. 2. Box plots for each user of average pixel intensity over a swipe, created using 16 hard and 16 soft swipes per user for all materials, paper only, and
wood only.

that eliminates narrow lines corresponding to swipes using a
25×1 and a 1×25 structural element to retain the hand, and
then subtracting the hand only image from the prior image.
The difference image contains the swipe devoid of the hand.
We apply a final opening operation with a 7×7 structural
element to remove noise occurring near the edge of the user’s
hand, and we consider all remaining white pixels to be the
region of the image containing the swipe. In case background
noise contaminates the resulting mask, we perform manual
adjustment of the binary threshold. We find that 48 of the 576
videos require a manual adjustment of the threshold from 4 to
8. We process each video frame independently and we apply
the resulting binary images as masks over the corresponding
original video frames to generate masked swipes. An example
masked swipe shown in the right image of Figure 1(c).

B. Swipe Path Extraction using Curve Fitting

We determine the path of the swipe by fitting a curve
to an accumulative intensity image shown at the top of
Figure 1(d). The accumulative image is obtained by summing
pixel intensities in the masked video over time. Since the
majority of the user swipes were simple arcs, we approximate
each swipe by a translated and rotated quadratic function. For
each finger swipe, we first estimate the line of best fit to the
pixel intensities. We then transform the coordinate system to
orient the best fit line along the positive x axis. Next, we
estimate the best fitting quadratic to the transformed pixels.
The region of interest describing the swipe is defined by pixels
which when transformed lie within 10 pixels of the quadratic
fit. We show an example polynomial swipe fit at the bottom of
Figure 1(d). Only pixels within the quadratic band and within
the masked region are retained as part of the swipe.

V. SWIPE CLASSIFICATION USING RANDOM FORESTS

We train a 500-tree random forest classifier [10] using 30
features, with each split using 6 features. We use the default
maximum voting scheme when determining the predicted class
label of the hard or soft swipe. We generate features from
the pixel values in the masked video and the accumulative
image within the region of interest. Using the masked video,
we generate a 10-bin histogram of average pixel intensities as
features, with each bin representing 1/2 second intervals of
time over the video length. Using the accumulative image, we
generate a 10-bin histogram of average pixel intensities and
a 10-bin histogram of maximum pixel intensities as features,
with each bin comprising 10% of the total swipe length over
the quadratic.

To perform the user-agnostic classification, we use leave-
one-out cross-validation to train random forest classifiers using
all 16 hard and 16 soft swipes of 8 training users during each
training fold, and we run the classifier on a test set of 8 hard
and 8 soft swipes of the left out user. For the user-aware
classification, we add in increasing levels training swipes from
each test user. We use three methods to add in the user-specific
training data: (a) we add only hard training swipes from 1 hard
swipe to 8 hard swipes, (b) we add only soft training swipes
from 1 soft swipe to 8 soft swipes, and (c) we add both hard
and soft training swipes from 1 hard and 1 soft to 8 hard and 8
soft swipes. All training swipes in user-aware classification are
distinct from the swipes in the test set for the user. We train
random forests for each material, as well as random forests
that combine both materials.
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Fig. 3. Overall confusion matrix for user-agnostic classification using random
forests trained and tested on all materials, paper only, and wood only.

VI. RESULTS

A. User Data Analysis

The top row of Figure 2 shows box plots for the average
intensity over all pixels in a swipe over the 16 hard and 16
swipes obtained for each of the 9 users in our experiments.
As expected, on average, soft swipes have lower average in-
tensities than hard swipes. The graphs depict a lower variance
in intensities of soft swipes overall in comparison to the hard
swipes. One reason for the high variance in intensity for hard
swipes may be that users are not accustomed to hard swipes
from everyday interactions. The graphs also depict some
dependence of separation on user, however, for several users
a constant separation boundary may be drawn enabling user-
agnostic classifier training, especially for individual materials.

For most users, there is a separation between the hard and
soft swipes, enabling user-aware re-training of user-agnostic
classifiers. Separation based on average intensities is weak for
user 2 interacting with wood and user 4 interacting with paper,
which also influences the spread in the box plots for both
the materials. The variance in intensities for user 7 may be
explained by the differences in heat transfer and retention of
paper versus wood, combined by the differences in hard swipe
interaction by user 7.

The average pixel intensity trends for each user from the top
row of Figure 2 are replicated in the 10-bin histograms from
Section V used in random forest classification. The bottom row
of Figure 2 shows overall mean pixel intensities averaged over
all 9 users accumulated into 10 bins over the length of the the
swipes. On average, the graphs show a difference between hard
and soft swipes even in the early stages of the swipe, enabling
swipe pressure detection in the beginning of the swipe for low
latency in response to user interaction.

B. Results of Classification

Figure 3 provides confusion matrices averaged across the
9 users for classifying hard and soft swipes using random
forests trained on all materials, paper only, and wood only. Our
approach shows high classification accuracy for wood due to
the ability of wood to retain heat transferred by the subject for
longer periods of time. When trained by mixing all materials,
the classifier is biased toward improving the accuracy of hard
swipes. Table I gives accuracy and precision of user-agnostic
classification for all materials, paper only, and wood only.

TABLE I
OVERALL ACCURACY, HARD SWIPE PRECISION, AND SOFT SWIPE

PRECISION FOR USER-AGNOSTIC RANDOM FOREST CLASSIFIERS TRAINED
USING ALL MATERIALS, PAPER ONLY, AND WOOD ONLY.

Accuracy Hard Precision Soft Precision
All Materials 0.76 0.73 0.80
Paper Only 0.77 0.80 0.74
Wood Only 0.88 0.85 0.92

TABLE II
OVERALL ACCURACY, HARD SWIPE PRECISION, AND SOFT SWIPE

PRECISION FOR USER-AWARE CLASSIFICATION BY ADDING INCREASING
LEVELS OF USER-SPECIFIC SWIPE DATA.

Accuracy Hard Swipe Soft Swipe
Precision Precision

Add 1
Hard

All Materials 0.77 0.74 0.82
Paper Only 0.79 0.82 0.77
Wood Only 0.88 0.85 0.92

Add 1
Soft

All Materials 0.76 0.73 0.80
Paper Only 0.78 0.84 0.75
Wood Only 0.88 0.85 0.91

Add 1
Hard,
1 Soft

All Materials 0.77 0.74 0.82
Paper Only 0.81 0.84 0.78
Wood Only 0.89 0.85 0.92

Add 4
Hard

All Materials 0.80 0.75 0.86
Paper Only 0.83 0.82 0.85
Wood Only 0.89 0.85 0.94

Add 4
Soft

All Materials 0.77 0.75 0.79
Paper Only 0.79 0.86 0.75
Wood Only 0.87 0.86 0.88

Add 4
Hard,
4 Soft

All Materials 0.80 0.76 0.85
Paper Only 0.85 0.86 0.85
Wood Only 0.89 0.86 0.93

Add 8
Hard

All Materials 0.81 0.75 0.89
Paper Only 0.84 0.82 0.88
Wood Only 0.89 0.85 0.94

Add 8
Soft

All Materials 0.78 0.77 0.79
Paper Only 0.80 0.86 0.75
Wood Only 0.88 0.89 0.87

Add 8
Hard,
8 Soft

All Materials 0.82 0.78 0.88
Paper Only 0.87 0.87 0.87
Wood Only 0.91 0.88 0.93

Table II provides accuracy and precision for adding increas-
ing numbers of user-specific training swipes for user-aware
classification. Each table shows the result of adding n hard
only, n soft only, and n hard and n soft swipes, where n is 1,
4, or 8. The overall average accuracy of classification reaches
82% for all materials on adding 8 hard and 8 soft swipes.
Figure 4 shows the change in accuracy in going from user-
agnostic classification to increasing levels of user-awareness
in the classification. In the top row, we show classification
accuracies for adding hard swipes only. We notice that the
addition of hard swipes improves the classification for most
users, with the maximum change occurring for wood with
users 6 and 8. We notice that the classification improvement
introduced by soft swipes is minimal. These trends may be
attributed to the fact that most users experience soft swiping
in everyday interactions with mobile devices, however, hard
swiping is rare, and may be tuned to user-specific behavior.



Fig. 4. Change in user-aware classification with addition of increasing numbers of hard swipes only from the user (top), soft swipes only from the user
(middle), and hard and soft swipes from the user (bottom) for all materials (left), wood (center), and paper (right). The horizontal axis for the bottom row
represents the number of hard and number of soft swipes used, e.g., 4 indicates that 4 hard and 4 swipes are used, i.e., a total of 8 swipes. The accuracy at
0 on the horizontal axis represents user-agnostic classification.

The trends of adding hard only and soft only swipes are
reflected in the addition of both hard and soft swipes, lending
further support for user-aware training with hard swipes.

C. Results of Partial Swipe Classification

To provide low-latency response to users as they perform
swipes, we also provide results of user-aware and user-agnostic
classification of swipe pressure over partial swipe data. We
train random forest classifiers using 10%, 20%, 40% and 70%
of the swipe data by using the first 1, 2, 4, and 7 bins of the
10-bin video and accumulative image histograms. Accuracy
and precision for the two types of classification are shown in
Table III. The user-aware classification corresponds to adding
all 8 hard and 8 soft training swipes for the test user. As shown
by the table, by 40% of the swipe length, the classification
results approach the results at the full length of the swipe,
indicating that swipe pressure classification can be performed
early in the swipe path.

VII. DISCUSSION

We provide user-agnostic and user-aware approaches to
distinguish hard and soft swipe pressures for users interact-
ing with natural surfaces using data recorded by a thermal
camera. Our analysis provides an average accuracy of 76%
using random forest classifiers trained on paper and wood
collectively solely using intensity data over the video. Our
results on performing user-aware classification indicate with
sparse sets of swipes, a higher improvement in classification
can be obtained by adding hard swipes only.

In this work, we choose not to use temporal data such as
the amount of time involved in performing a swipe, as the
time taken is often task dependent, e.g., a soft swipe may be
performed slower for scrolling down a page as opposed to for
sifting through pages. However, it may be hypothesized that
due to the effort involved in performing a hard swipe, the time
taken to perform hard swipes is longer for the same distance
than the time taken to perform a soft swipes. Furthermore,
the effort involved may also impact the shape of the swipes,
causing hard swipes to be straighter than soft swipes. As part



TABLE III
OVERALL ACCURACY, HARD SWIPES PRECISION, AND SOFT SWIPES

PRECISION FOR PARTIAL SWIPE DATA CLASSIFICATION.

Accuracy Hard Swipe Soft Swipe
Precision Precision

User-
Agnostic,
10%

All Materials 0.60 0.60 0.59
Paper Only 0.59 0.60 0.57
Wood Only 0.64 0.63 0.65

User-
Agnostic,
20%

All Materials 0.73 0.72 0.73
Paper Only 0.65 0.66 0.64
Wood Only 0.79 0.76 0.83

User-
Agnostic,
40%

All Materials 0.77 0.74 0.80
Paper Only 0.73 0.74 0.71
Wood Only 0.87 0.84 0.91

User-
Agnostic,
70%

All Materials 0.79 0.76 0.84
Paper Only 0.74 0.75 0.73
Wood Only 0.88 0.85 0.91

User-
Aware,
10%

All Materials 0.65 0.66 0.64
Paper Only 0.65 0.68 0.62
Wood Only 0.73 0.72 0.74

User-
Aware,
20%

All Materials 0.77 0.78 0.77
Paper Only 0.75 0.76 0.74
Wood Only 0.82 0.81 0.84

User-
Aware,
40%

All Materials 0.81 0.77 0.86
Paper Only 0.84 0.84 0.85
Wood Only 0.88 0.86 0.91

User-
Aware,
70%

All Materials 0.83 0.79 0.89
Paper Only 0.83 0.82 0.84
Wood Only 0.89 0.86 0.92

of future work, we will perform task-driven analysis of the
duration and shapes of hard and soft swipes, as potential
features for classification especially in earlier portions of the
swipe for faster response.

Our approach indicates that due to potentially limited
experience of users with hard swiping, user-aware training
may show improvements for hard swipe classification. Using
our work, an approach to perform online re-training of user-
agnostic swipe pressure classifiers to be user-aware may be to
probe the user at intervals about the desire of their swipe based
on factors such as the length of time to perform a swipe. The
response of the user may be used to re-train the classifier if
the intended swipe was hard. It may be desirable in everyday
applications to limit the use of hard swipes for less frequent
interactions such as drag-and-drop, which may provide the

scope to restrict user probing to maintain non-invasive user
experience. In future work, we will investigate techniques
to perform seamless probing of the desired swipe using the
human-in-the-loop to perform user-aware re-training of user-
agnostic classifiers. Future work will also include investigating
the effect of changes in ambient temperature, expanding the
dataset of materials tested, and investigating the effect of the
heat capacity of various materials on swipe pressure detection.
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