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Abstract. We provide an approach to reconstruct spatiotemporal 3D
models of aging objects such as fruit containing time-varying shape and
appearance using multi-view time-lapse videos captured by a microenvi-
ronment of Raspberry Pi cameras. Our approach represents the 3D struc-
ture of the object prior to aging using a static 3D mesh reconstructed
from multiple photographs of the object captured using a rotating cam-
era track. We manually align the 3D mesh to the images at the first
time instant. Our approach automatically deforms the aligned 3D mesh
to match the object across the multi-viewpoint time-lapse videos. We
texture map the deformed 3D meshes with intensities from the frames at
each time instant to create the spatiotemporal 3D model of the object.
Our results reveal the time dependence of volume loss due to transpi-
ration and color transformation due to enzymatic browning on banana
peels and in exposed parts of bitten fruit.

Keywords: Spatiotemporal · 3D model · Multi view · Time-varying
Time lapse

1 Introduction

Public repositories of 3D models of objects are expanding rapidly, with ready-to-
use 3D models available for a wide variety of applications such as animation [5],
physics simulations [3,4], robotic manipulation [8] and photo-editing [16]. How-
ever, the information contained in publicly available 3D models is still limited.
Most 3D models only contain the geometry and textures for rigid objects. While
rigged models exist for faces and bodies, current 3D model repositories lack the
range of dynamic behaviors exhibited by real-world objects such as plush toys
deforming under impact, metal corroding, chocolate melting, and bitten fruit
such as the apple in Fig. 1 shrinking and browning when kept outside.

In this paper, we provide a data-driven approach to reconstruct spatiotempo-
ral 3D models of objects such as fruit that undergo changes in shape and appear-
ance due to aging when exposed to the environment. Unlike prior approaches on
time-varying aging that focus on appearance transformations [11,13,19,23], our
approach models both appearance change due to enzymatic browning [25] and
shape deformations due to water loss.
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Fig. 1. Given time-lapse videos of an aging object from multiple viewpoints as shown
on the left, our approach reconstructs a spatiotemporal 3D model as shown by the
views on the right.

Our approach deforms a static 3D mesh of the object reconstructed prior to
aging to fit synchronized time-lapse videos of the object captured from multiple
viewpoints. As discussed in Sect. 3, we contribute a 3D printed camera track
to automatically capture and stitch multiple photographs of the object into
the static mesh. We contribute a microenvironment of multiple Raspberry Pi
v2 cameras that automatically capture the synchronized time-lapse videos from
various viewpoints as described in Sect. 4. We provide a manual interface to
rigidly align and deform the static mesh to images at the first time instant as
discussed in Sect. 5. Our approach automatically deforms the 3D mesh to match
the object in the time-lapse videos and maps the deformed meshes with seam-free
textures from the time-lapse images as discussed in Sects. 6 and 7.

Section 8 shows the spatiotemporal 3D models resulting from our approach.
Our spatiotemporal 3D models enable data-driven analysis of the physical prop-
erties of objects aging under environmental effects as shown by our results on
volume loss and appearance transformation in Sect. 8. The spatiotemporal 3D
models provided by our work have the potential to enhance consumer quality
of life by providing applications such as data-driven prediction of shelf-life of
perishable food products from grocery store cameras, automated monitoring of
the structural health of erosive materials used in building constructions, and
intelligent updates to end users on the status of fruit, cooked items, and baked
goods in their home environments.

2 Related Work

Many approaches simulate time-varying phenomena such as metal erosion, paint
cracking, and plant aging using physics-based and biological models [10,17,26,
30]. These models often lack comprehensive representation of fine-scale appear-
ance changes in real-world objects. Several data-driven approaches model real-
world appearance by capturing material samples using a single camera [11], mul-
tiple cameras [13,19], or scanner-camera setups [23]. None of these approaches
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capture time-varying shape. In conjunction with appearance, our approach cap-
tures the shape deformation exhibited by fruit undergoing volume changes due
to water loss. The approach of Li et al. [21] analyzes plant growth using 3D point
clouds captured by rotating the plant and imaging it using a single structured
light scanner. Unlike their approach, we use multiple cameras to capture the 3D
structure of the object by keeping it still to avoid rotational forces from deforming
the object shape. Their approach yields uncorresponded 3D point clouds, while
our approach yields spatiotemporal models with mesh vertices corresponded in
time.

Our work is more closely related to approaches that reconstruct spatiotem-
poral 3D shape and appearance models of facial and body motion from multiple
viewpoint videos. These approaches need to address the challenge of estimat-
ing frame-to-frame correspondences where brightness constancy may not hold
between adjacent frames due to aggressive face and body motions or due to
occlusion from moving body parts. The approach of de Aguiar et al. [2] matches
3D body model points to interest point correspondences between multiple images
at the same time instant, and uses silhouette rims to refine the alignment.
Beeler et al. [6] cluster video frames as anchored and unanchored to a refer-
ence frame, propagate a 3D mesh to fit reference-to-anchored and anchored-to-
unanchored correspondences obtained using normalized cross-correlation, and
perform a global optimization to refine the propagated 3D meshes under con-
straints of image fidelity, mesh consistency, and geometric smoothness. Unlike
such approaches, we use small time-lapses to capture slow aging transformations
occurring over the span of hours to days, where brightness is nearly constant
between adjacent frames, enabling the use of optic flow techniques such as [24].

3 Camera Track to Capture Static 3D Mesh

We provide a rotating camera track of diameter 620 mm shown in Fig. 2(a) to
automatically capture photographs of the object from multiple viewpoints. The

(a) Rotating Camera Track (b) Photographs of Object Captured 
By Camera Track

(c) Static 3D Mesh (d) Static 3D Mesh 
with Texture

Fig. 2. (a) Rotating track with a Raspberry Pi camera attached to a tower to image an
object from multiple viewpoints. (b) Photographs of a pear captured by the rotating
camera. (c) Static 3D mesh reconstructed by stitching the photographs. (d) Static 3D
mesh mapped with the texture from the photographs.
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track is constructed by joining 12 programmatically modeled 3D printed arcs
as discussed in [18], and is controlled using a Nema 23 stepper motor with a
1.8◦ step angle. The track rotates over ball bearings on a base assembled from
slottable 3D printed segments. We use a Raspberry Pi v3 computer to program
the movement of the stepper and the imaging of the object using a Raspberry
Pi v2 camera. Figure 2(b) shows the images of a pear captured using the track.
We stitch the photographs into a static 3D mesh using Autodesk ReMake [1]
shown in Figs. 2(c) and (d).

4 Microenvironment of Multiple Raspberry Pi Cameras
to Capture Time-Lapse Videos

As shown in Fig. 3(a), we use a microenvironment of four Raspberry Pi v2 cam-
eras to capture multiple viewpoint time-lapse videos of the object aging. Details
of the microenvironment construction can be found in [14]. We provide a Java
graphical user interface (GUI) that allows a user to set a time-lapse duration
and capture length, and run the time-lapse capture of an aging object. When a
capture process is started, the server sends a parallelized capture signal to each
Raspberry Pi computer at every time-lapse instant. On receiving the signal, each
Raspberry Pi invokes an image capture. We manually set the exposure value
and white balance to be constant. Each Raspberry Pi computer sends the cap-
tured image to the master computer to augment corresponding video sequences.
Figure 3(b) shows multi-view images of a banana blackening captured using the
Raspberry Pi microenvironment. We refer to each set of multi-view images at a
single time instant in the videos as a frame F .

(a) Raspberry Pi Camera Microenvironment (b) Time-lapse Images Captured From Each Camera
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Fig. 3. (a) Microenvironment of four Raspberry Pi v2 cameras to capture time-varying
phenomena such as aging. (b) Sample images shown from a time-lapse video of a
blackening banana. While images are shown every 1000 min to show the range of the
video, the time-lapse interval is finer at 5 min.

5 3D Mesh Alignment to Initial Frame

While the 3D mesh reconstructed using ReMake provides an accurate represen-
tation of the object, small-scale deviations due to ground contact, imperfect cor-
respondences between photographs, or ambiguities in resolving illumination from
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reflectance often render the 3D model imprecise. We provide a manual approach
that adapts the geometry correction method of Kholgade et al. [16] to match
the 3D mesh to the object in multiple viewpoint images at the initial frame of
the time-lapse videos, i.e., at F = 0, using user-provided correspondences. While
automated approaches to perform 3D model alignment exist [15,22], they fail to
provide unsupervised pixel-precise alignment for unstructured object collections
such as the fruit in this work.

We first perform a rigid alignment of the 3D mesh to the 2D images from 2D-
3D correspondences. As shown in Fig. 4(a), for the jth image in the initial frame,
we mark mj 2D points xkj

in the image and corresponding 3D points Xkj
in the

3D mesh, where kj ∈ {1, 2, · · · ,mj}. We use the efficient Perspective n-Point
algorithm (ePnP) [20] to estimate the rigid pose of each camera consisting of its
rotation Rj and translation tj with respect to the 3D mesh using mj ≥ 4. For
each image, the ePnP algorithm requires mj ≥ 4 correspondences, necessitating∑m

j=1 mj ≥ 4m correspondences, where m is the number of cameras.

Xkj

xkj

xij

(a) (b)

Camera j = 1

Texturized Static 3D Mesh

Camera 1 Camera 2

Camera 3 Camera 4
(c)

Camera 2

Camera 2

x0
ij

x0
ij

Fig. 4. Alignment of the 3D mesh to the frame at time instant 0 min, i.e., the initial
frame. (a) Interface to manually perform rigid alignment of the 3D mesh on the right
to the initial frame images from all four cameras on the left. The 3D mesh is texture-
mapped with the stitched texture from the static mesh reconstruction for ease of point
marking. (b) The user marks a single point correspondence in the second image (top)
to deform the 3D mesh (bottom). (c) 3D mesh aligned to the object in all four images
after several user-marked correspondences.

We use the pose {Rj , tj} of each camera to project the 3D mesh X ∈ R
3×N

into each camera image, where N is the number of vertices on the mesh. We man-
ually deform X to mesh X0 with pixel-precise alignment to the object contours
at the initial frame F = 0 by marking nj 2D correspondences xij ∈ R

2 on the
3D mesh projection and x0

ij
∈ R

2 on object contours, where ij ∈ {1, 2, · · · , nj}.
The top image in Fig. 4(b) shows a single user-provided 2D-2D correspondence.
We backproject rays from the camera center through xij to obtain 3D points
Xij ∈ R

3 at the intersection of the rays and the faces of X. Similar to Kholgade
et al. [16], we estimate the deformed 3D mesh X0 ∈ R

3×N from Xij and x0
ij by

optimizing the objective function E(X0) in X0, where

E(X0) = λrayEray(X0) + λlapElap(X0) + λsmallEsmall(X0). (1)
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As in Kholgade et al., the term Eray in Eq. (1) constrains each 3D point X0
ij

to
lie as close as possible to the projection of X0

ij
on the ray v0

ij
= K−1

j

[
x0
ij

; 1
]
1

through the 2D point x0
ij

. Eray is described as

Eray(X0) =
∑nj

ij=1

∥
∥
∥
∥

(

I3 − v0
ij

(v0
ij

)T /
∥
∥
∥v0

ij

∥
∥
∥

2
)

RjX0
ij

∥
∥
∥
∥

2

, (2)

where I3 represents the 3 × 3 identity matrix. The term Elap represents a sim-
plified version of the Laplacian surface energy from the approach of Sorkine and
Alexa [29]. Since our deformations are small, we eliminate co-tangent weights
and local rotation estimation from their approach to yield Elap as

Elap(X0) =
∑N

i=1

∥
∥
∥
(
X0

i − Xi

) − ∑
l∈N (i)

(
X0

l − Xl

)
/‖N (i)‖

∥
∥
∥

2

, (3)

where N (i) is the 1-ring neighborhood of X0
i . We drop the symmetry term from

approach of Kholgade et al., as our objects show asymmetry due to slicing or
bite marks. We introduce the term Esmall in our approach, where

Esmall(X0) =
∑N

i=1

∥
∥
(
X0

i − Xi

)∥
∥2 (4)

to restrict the deformations to be as small as possible. The term prevents an
arbitrary resizing and translation of the 3D mesh due to the scale ambiguity
inherent to the relationship between the 3D mesh and the cameras. The bottom
image of Fig. 4(b) shows the 3D mesh deformed to match the 2D-2D correspon-
dence marked at the top. Figure 4(c) shows the deformed 3D mesh aligned to all
four images of the first time-lapse frame for an apple. We use weights λray = 1,
λlap = 5, and λsmall = .001 in this work.

6 Automatic 3D Mesh Deformation to Time-Lapse
Videos

Given the 3D mesh aligned to the initial frame, our approach automatically
estimates a deformation of the 3D mesh to match point correspondences on the
object over successive frames in the sequence of multi-view time-lapse videos.
Our approach leverages the assumption that adjacent time-lapse images from a
particular viewpoint show minimal change in shape and appearance, enabling the
use of optic flow to estimate point correspondences between successive frames.
We use the Kanade-Lucas-Tomasi (KLT) tracking approach [24] to estimate nF

j

2D point correspondences xF
ij

and xF+1
ij

between the jth images in the current
frame F and the next frame F + 1, where ij ∈ {1, 2, · · · , nF

j }. Figure 5(a) shows
the 2D point correspondences estimated between two adjacent frames for the
bitten apple. We use the projection of the 3D mesh in each image of the frame
F to retain point correspondences within the object contour.
1 In

[
x0
ij ; 1

]
, the semi-colon appends 1 at the end of column vector x0

ij .
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Fig. 5. Automatic deformation to multi-view time-lapse sequence of the bitten apple.
(a) Point correspondences in red obtained using Kanade-Lucas-Tomasi (KLT) tracking
between successive images from the first two frames. (b) Deformed 3D mesh for each
camera image at various instances in the time-lapse sequence. The 3D mesh at time
instant 0 min from Fig. 4(c) is shown at the right for size comparison to the 3D mesh
at the last time instant of 7200 min. (Color figure online)

Given a deformed 3D mesh XF ∈ R
3×N at frame F , we determine each

3D point XF
ij

on XF by back-projecting a ray from the camera center through
xF
ij

and determining barycentric coordinates αlij for vertices Xl on the face
Fk ∈ F that intersects the ray, where l ∈ Fk and F is the set of mesh faces.
To reduce drift over the 3D model deformations, we deform the initial mesh X0

instead of XF to fit the corresponding points xF+1
ij

in frame F +1. We compute
3D points on X0 corresponding to XF

ij
as X0

ij
=

∑
l∈Fk

αlijX
0
l . We estimate

the deformed 3D mesh XF+1 in the frame F + 1 by optimizing the objective
function E(XF+1) in XF+1. We set up E(XF+1) by performing the substitutions
X ← X0, X0 ← XF+1, nj ← nF

j , and v0
ij

← vF+1
ij

in Eqs. (1)–(4). The quantity

vF+1
ij

= K−1
j

[
xF+1
ij

; 1
]

represents the ray through the 2D point xF+1
ij

in the
frame F + 1. Figure 5(b) shows the deformed mesh aligned to several frames in
the time-lapse sequence of the bitten apple.

7 Texture Mapping the Deformed 3D Meshes

Given the 3D meshes deformed to match each time-lapse frame, we texture map
each mesh with the intensities from the individual images. For the frame F of
the time-lapse sequence, we use ray intersections to obtain the subset FF

j ∈ F
of faces visible from the viewpoint of the jth camera. We sample the intensities
at the vertices indexed by FF

j in the jth image. We use the sampled intensities
to create a texture mapped sub-mesh consisting of the vertices indexed by FF

j .
Figure 6(a) shows the sub-meshes for the bitten apple from the four cameras.
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We blend the sub-meshes using TextureStitcher [7] to create a seamless texture-
mapped 3D mesh at frame F , as shown in Fig. 6(b). The texture-mapped meshes
for all time instants form a spatiotemporal 3D model for the object.

Sub-mesh 
From Camera 1

Sub-mesh 
From Camera 2

Sub-mesh 
From Camera 3

Sub-mesh 
From Camera 4

View From 
Camera 1

View From 
Camera 2

View From 
Camera 3

View From 
Camera 4

(a) Inputs Sub-meshes to Texture-Mapping (b) Output 3D Mesh Texture-Mapped With Images

Fig. 6. Texture-mapping the 3D model. (a) As input to TextureStitcher [7], we provide
four sub-meshes obtained by sampling the intensities from each image at the vertices of
the faces visible in the corresponding camera. (b) TextureStitcher provides the complete
3D mesh as output containing seamlessly blended texture from the input sub-meshes.

8 Results

The top rows of Figs. 7 and 9(a)–(c) show spatiotemporal 3D models recon-
structed for a pear, the bitten apple, a cut mango, and a unpeeled banana.
Time-lapse intervals used in our captures were 10 min for the apple and banana,
and 5 min for the mango and pear. We aged the apple and banana for 7200 min
or 5 days, the mango for 3600 min or 2.5 days, and the pear for 2165 min or
1.503 days. The 3D models of the bitten objects reveal enzymatic browning over
time when the exposed regions undergo oxidation catalyzed by polyphenol oxi-
dase [25]. The spatiotemporal 3D model of the banana shows appearance change
from yellow with black spots to nearly full black. The 3D model of the mango
shows its leaning over under the influence of gravity. The mango model also
shows slight browning due to decay at exposed edges.

Volume Loss Analysis. The middle rows of Figs. 7 and 9(a)–(c) show time-
plots of log(V/V0), the logarithmic rate of change of volume V expressed as a
ratio of the initial volume V0. We compute the volume of each 3D mesh using the
approach of [31]. We estimate linear fits shown in red dashed lines to analyze the
match between the data plot and models that describe fruit senescence in terms
of exponential decay [17]. We use random sample consensus (RANSAC) [12] to
eliminate outliers in the linear fit. While our estimation shows a close match
between the exponential decay model and the data for the banana and the pear,
it under-estimates the rate of volume change for the mango and the apple. As
part of future work, we are interested in understanding the occurrence of super-
exponential volume decay in fruit by extending the time duration of capture for
the banana to include the underripe green phase and rotten black phase, and by
creating spatiotemporal 3D models for a greater diversity of fruit.

Appearance Change Analysis. The bottom rows of Figs. 7 and 9(a)–(c) show
plots of the mean color in each textured 3D mesh across the time-lapse sequence.
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Fig. 7. Multiple views of the spatiotemporal 3D model and time plots of the log per-
centage of the initial volume and average color for bitten pear. (Color figure online)

For objects undergoing browning of exposed regions such as the apple and the
pear, the rate of color change is high in the beginning and tapers toward the end,
showing that browning occurs rapidly in the initial phases of exposure. For the
banana where enzymatic browning occurs on the peel, we notice a gradual change
in color in the beginning during the phase when the banana develops black spots,
followed by an acceleration in color change as the spots saturate and the object
becomes overripe. The mango shows a slower rate of color change over the time-
lapse sequence, indicating lower levels of polyphenol oxidase compared to the
apple, pear, and banana.

Brightness constancy analysis. Our 3D model deformation is based on the
assumption that brightness is nearly constant over successive frames. Figure 8(a)
shows a plot of root-mean-square (r.m.s.) difference in frame-to-frame appear-
ance estimated using the textures obtained in Sect. 7. The mean value of the
r.m.s. difference on a 0 to 255 intensity scale is 7.59± .48 for the apple, 7.05± .60
for the banana, 6.91±.65 for the pear, and 5.91±.35 for the mango, showing that
per-frame differences in appearance are small. High values in the plot indicate
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Fig. 8. (a) Plot of root-mean-square (r.m.s.) frame-to-frame appearance difference
against time. (b) Frames showing interactions with a VR environment containing spa-
tiotemporal 3D models. The user plays forward aging in the banana and pear.
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lighting fluctuations, however, the slow rate of volume change introduces small
point translations in the image, enabling the KLT tracker to accurately track
points under slight fluctuations in illumination.

Interactions with Spatiotemporal 3D Models. The spatiotemporal 3D
models created by our approach can be imported into standard 3D modeling
and rendering software to create animations, games, and virtual reality (VR)
environments. For instance as shown in Fig. 8(b), we use our spatiotemporal
manipulation interface in VR discussed in [27] to perform spatial manipulations
such as rotations, scaling, and translation and temporal manipulations such as
playing, rewinding, and forwarding of changes in shape and appearance due to
aging of objects.

9 Discussion

We provide an approach to reconstruct spatiotemporal 3D models of objects
such as fruit that undergo aging on exposure to the environment. Our approach
deforms a static 3D mesh reconstructed from photographs captured by a rotat-
ing camera track to time-lapse image sequences of the aging object captured
from multiple viewpoints. The spatiotemporal 3D models provided by our app-
roach reveal changes to shape changes due to water volume loss and appearance
changes due to enzymatic browning characteristic of natural objects such as
fruit.

The main limitation of our approach is that it requires manual interaction to
perform precise alignment the 3D model to the initial frame. In future work, we
will use matching of multi-viewpoint renders with interest point correspondences
to perform automatic pixel-precise deformation of the mesh to the initial frame.
Our approach retains the contribution of illumination in the texture as seen
by the shadow on the surface of the pear and apple. As part of future work,
we will evaluate BRDFs obtained using light probes [9] and using illumination
estimation [16,28]. Since our approach relies on approximate frame-to-frame
brightness constancy to identify point correspondences using KLT tracking, it
may not handle rapidly occurring changes such as popping corn kernels. We
will investigate supervised learning approaches to predict point correspondences
between frames with dissimilar brightness.

Our work is the first step in the creation of spatiotemporal 3D model reposito-
ries enriched with information on dynamic real-world object behaviors. As part
of our future work in creating these repositories, we will expand the range of
behaviors captured to include melting, weathering, and corrosion, perform data-
driven estimation of physical properties, and perform controlled experiments to
include the effect of variation in temperature and humidity on object aging. Our
long term goal is to use spatiotemporal 3D models in performing data-driven
understanding of the aging status of objects such as fruit ripeness and edibility
and structural health of erosive objects from images taken by ubiquitous devices.
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Fig. 9. Multiple views of the spatiotemporal 3D model and time plots of the log per-
centage of the initial volume and average color for (a) Apple (b) Mango, and (c) Banana.
(Color figure online)
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