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Abstract. Natural surfaces offer the opportunity to provide augmented
reality interactions in everyday environments without the use of cumber-
some body-mounted equipment. One of the key techniques of detecting
user interactions with natural surfaces is the use of thermal imaging that
captures the transmitted body heat onto the surface. A major challenge
of these systems is detecting user swipe pressure on different material sur-
faces with high accuracy. This is because the amount of transferred heat
from the user body to a natural surface depends on the thermal prop-
erty of the material. If the surface material type is known, these systems
can use a material-specific pressure classifier to improve the detection
accuracy. In this work, we address to solve this problem as we propose a
novel approach that can detect material type from a user’s thermal fin-
ger impression on a surface. Our technique requires the user to touch a
surface with a finger for 2 s. The recorded heat dissipation time series of
the thermal finger impression is then analyzed in a classification frame-
work for material identification. We studied the interaction of 15 users
on 7 different material types, and our algorithm is able to achieve 74.65%
material classification accuracy on the test data in a user-independent
manner.

Keywords: Multimaterial classification · Thermal imaging · Natural
surface interface · Time series

1 Introduction

Sensor modalities outside the visible light domain such as depth, hyperspectral,
and thermal cameras have begun to permeate the consumer space, and their
ubiquity enables the spread of novel applications in the consumer domain. One
such application is the use of any natural surface as a touchscreen interface to
communicate with computing devices. While traditionally natural surface inter-
action has been performed in the color domain [1–3], a number of approaches
[4–8] have demonstrated the effectiveness of using thermal sensors to perform
natural surface interaction. Some of these works [6,8] attempted to detect swipe
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pressure because this can add a new dimension to the vocabulary space of swipe
and gesture actions. For example, the same swipe pattern with different pressure
can carry different meanings for the interacting computing device. One of the
main challenges of this task is the manifestation of swipe pressure as heat signa-
ture varies with different surface materials. This is because the amount of heat
transferred from the user body to a surface depends on the thermal property of
the surface material. For example, swipe actions with similar pressure on con-
crete and wood surfaces would appear differently while recorded using a thermal
camera. On the other hand, a hard swipe on a concrete surface can look similar
to a soft swipe on a wood surface. Figure 1 illustrate the problem with an exam-
ple. As a result, pressure detection accuracy suffers a great deal while performed
across different materials. Our work aims to solve this problem with automatic
material detection which should precede the swipe pressure classification. Once
the surface material is identified using our method, a material-specific classifier
can be applied to detect the swipe pressure.

To perform automatic material classification using thermal images, we pro-
posed a novel approach where a user needs to touch the surface of a material
for 2 s with his finger. The thermal finger impression left on the surface is then
tracked for 50 s. The time series of decaying heat signature of the thermal finger
impression is used in a random forest based classification framework to detect the
surface material. The algorithm is tested on data captured from 15 different users
interacting with 7 different material types including blackboard, polyester fabric,
cotton cloth, concrete, drywall, laminate, and wood. The classification accuracy
achieved on the test data set is 52% compared to the random guess probability
of 14.29%. Further investigation suggests that thermal signature decay patterns
of blackboard and concrete are almost similar. Similar behavior observed for
thermal patterns of drywall, laminate, and wood. See Fig. 3 for details. This
suggests us to cluster 7 material types into 4 classes (Class 1 - blackboard and
concrete, class 2 - polyester fabric, class 3 - cotton cloth, class 4 - drywall, lam-
inate, and wood) based on their thermal impressions. Since the appearance of
swipe pressure in the thermal domain depends on the amount of heat transferred
onto the surface and its decay pattern, we concluded that swipes with similar
pressure would display a similar thermal signature on materials of each of these
four classes. The classification accuracy achieved for the detection of 4 material
classes is 74.65%. Compared to the probability of random guess (25%) this is a
significant improvement.

The main contribution of this paper is a novel user-independent material
detection method. We selected 7 different material types that commonly found
in indoor scenarios, and we demonstrated that they can be divided into 4 clusters
based on their thermal behaviors. The method should assist in improving the
accuracy of the systems which aim to perform user swipe pressure classification
on different material surfaces. This can be achieved by first detecting the thermal
class of a material, and then using a pressure classifier specific to the thermal
property of the material.
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Fig. 1. This example illustrates how swipes with similar pressure can appear very
different on different materials. (a) Hard swipe on wood, (b) soft swipe on wood, (c)
hard swipe on concrete, (d) soft swipe on concrete.

2 Related Work

There have been several approaches that attempt to solve the problem of inter-
action with projected content on natural surfaces. While some of the work [1–3]
used color cameras to detect user actions and gestures, others [4–8] leveraged on
thermal domain data to address the problem. Few of the work [6–8] gone ahead
to solve the problem of swipe pressure detection. While detection of swipe pres-
sure can open a new dimension of user interaction with natural surfaces, accurate
detection of swipe pressure across different materials type can be challenging.
This is mainly because the amount of heat transferred to different material
types is different even if the swipe pressure is similar. The problem is demon-
strated in Fig. 1. Our work proposes to solve this problem by first detecting a
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Fig. 2. Thermal finger impression data collection setup. (a) Table mounted camera.
(b) Tripod mounted camera. (c) Thermal finger impression data on a material surface.

surface material type, and then allowing swipe pressure detection systems to use
material-specific classifiers for the task.

There have been a few studies for multi-material detection from thermal
images. Gundupalli et al. [9] proposed a material detection system to assist the
segregation of recyclables items. However, they require to heat the materials
in a dark hot chamber with controlled temperature. Cho et al. [10] use a ther-
mal camera integrated into a mobile phone to capture thermal images of indoor
and outdoor materials, and they utilize thermal texture information for mate-
rial classification. Unlike this method, our material surfaces are smooth and do
not display much texture information in the thermal domain. Aujeszky et al.
[11] performed material classification using laser excitation step thermography.
Bai et al. [12], use a heat lamp to heat up the local environment and capture
the thermal signature of the materials. Our method, on the other hand, does not
require any specific hardware system, and it can classify materials that otherwise
are difficult to identify with texture features.

3 Data Collection

All the data is captured using a Sierra Olympic Viento-G thermal camera with a
9 mm lens. The data is recorded at 30 frames per second (fps) rate and stored as
16 bit TIFF images with 640 × 480 pixels resolution. We collected data from 15
users interacting with 7 different materials such as blackboard, polyester fabric,



Automatic Material Classification Using Thermal Finger Impression 243

cotton cloth, concrete, drywall, laminate, and wood. Five different samples for
each material, scattered across 8 different rooms of two buildings, are used in
this process. The indoor temperature during data collection was between 65◦

to 70◦ Fahrenheit. Before the data collection, we made sure that the users’
hand temperature is close to normal human body temperature in the range of
95◦ to 100◦ Fahrenheit. For each material sample, users are asked to provide
10 thermal finger impressions. As a result, we collected 5250 (7 materials ×
5 samples × 15 users × 10 finger impressions) finger impression examples in total
for all users on all material samples. For thermal finger impression data, users
are asked to touch the material surface for approximately 2 s with their index
finger. The transferred heat from the finger to the material surface (thermal
finger impression) is recorded for 50 s to get the diminishing heat pattern. For
the entire duration of data recording, the camera setup is arranged in such a way
that the camera axis remains normal to the material surface. The data capturing
procedure is illustrated in Fig. 2.

Fig. 3. A plot of average time series patterns for 7 different material types. The horizon-
tal axis is corresponding to the frame number relative to the first recorded frame. The
vertical axis represents the background-subtracted average pixel value for all thermal
finger impression instances of a material type.
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4 Method

Our method comprises of data pre-processing, feature extraction, and classifica-
tion. The following sections explain the steps in detail.

4.1 Data Pre-processing

We performed mainly two tasks under data pre-processing. Data cleanup, and
camera fluctuation correction. In the data cleanup step, we rejected some of the
recorded data due to various reasons such as high frame drop rate, thermal finger
impression being occluded by the user body part, and a user provides multiple
finger impressions in very close proximity that cannot be segregated from each
other. We rejected approximately 10% of the data in this process.

We observed different camera fluctuations while analyzing the data. One of
the case being the camera automatically performs flat field corrections while
recording the data. In this process, it records around 10 frames with high inten-
sity fluctuations which is completely uncorrelated with the thermal signature
of the recorded scene. We call these frames as bad frames. Second, after flat
field correction occurs, we observe a slight fluctuation in recorded intensity for
constant surface temperature. Both of these problems are corrected by observ-
ing the average thermal intensity of a small area on recorded frames sequences.
This gives us a time series Tc = {t1, t2, ..., tn}, n being the number of frames
in the sequence. The area is selected such a way that it does not get occluded
by the user at any time point of the recorded duration. Generally, selecting
an area from top right corner of the frame works well across all the sam-
ples. The bad frame sequence can be easily identified by detecting the frames
which produce fluctuations in Tc greater than a threshold Thbf = 200. The
value of Thbf is empirically determined. The detected bad frames, Tbf , are
ignored in the feature extraction step. To correct the second type of fluctua-
tions, we simply subtracted T ′

c = {t′1, t′2, ..., t′n′} from thermal finger impres-
sion time series F explained in Subsect. 4.2. Where, T ′

c = Tc−bf − T 1
c−bf ,

Tc−bf = {tc−bf
1, t

c−bf
2, ..., t

c−bf
n′} = (Tc − Tbf ), n′ is number of frames in T ′

c

and Tc−bf . T 1
c−bf is a sequence repeating tc−bf

1 for n′ times.

4.2 Feature Extraction

Once the image sequences are corrected of camera fluctuations, we extract time
series feature vectors from thermal finger impressions. For each of the thermal
finger impressions, we manually marked the center pixel and the starting frame
where the finger impression is first observed. An 11 × 11 pixels square patch is
then selected around the center pixels as a Region of Interest (ROI). We used the
background subtraction technique to compute the mean thermal intensity dif-
ference caused by the finger impression ROI. For this purpose, we computed the
background model bg as the average of the first 10 frames of a recording sequence.
Suppose the frame sequence starting from the first frame marked for the thermal
finger impression is S = {s1, s2, ..., s1500}. The length of the sequence is 1500 as
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we observed the finger impression for 50 s at 30 fps rate. The time series fea-
ture F = {f1, f2, f1500} is then computed as fi = mean(differ(sROI,i, bgROI)),
i ∈ [1, 1500]. Where sROI,i is the ROI on frame si, bgROI is the ROI on the
background model. The operation differ(sROI,i, bgROI) performs pixel-wise sub-
tractions of bgROI from sROI,i. Finally, mean(.) computes the average of all
pixel-wise differences in differ(sROI,i, bgROI).

As expected, the extracted time series features mostly follow a non-increasing
curve. Figure 3 displays the time series computed by averaging all finger impres-
sion time series for each of the 7 material types. As it can be seen, the time series
patterns of blackboard and concrete are very similar. The same is applicable for
drywall, laminate, and wood. This suggested us to club blackboard and concrete
in one cluster and drywall, laminate, and wood in another cluster. Below are
the features we considered for the classification framework. Before computing
the features, a one-dimensional median filter with window size 51 is used for
denoising the time series.

Raw Time Series: This is the 1500 dimensional time series F computed for each
of the thermal finger impressions.

Relative Time Series: 1500 dimensional time series F ′ constructed by computing
absolute differences of f1 and each element of F . Sometimes, feature vectors of
different samples of the same material can show some variance in absolute values.
This feature can help to preserve the decay pattern of the time series ignoring
the variance of absolute values. We used the 3000-dimensional concatenation of
F and F ′ as the feature vector.

Polynomial Coefficients: We fitted a polynomial of degree 2 and a polynomial of
degree 3 on each of the time series. The 7 polynomial coefficients (3 coefficients
of the polynomial of degree 2 followed by 4 coefficients of the polynomial of
degree 3) are used as a feature vector.

Median Samples: A time series F is divided into k equal parts. The median
values of each part are computed constructing a k dimensional feature vector.
This helps to ignore local distortion of features due to unexpected noise. Different
value of k is used starting from 10 to 100 with a stride of 10.

Relative Median Samples: A k dimensional median samples vector is computed
on F ′, and it is concatenated with the k dimensional median samples on F .
Therefore, a k relative median samples feature vector is a 2 × k dimensional
vector.

4.3 Classification

We divided our data set into two parts. The first part consists of data from users
1 to 10 and we call it the training set. The second part consists of data from
users 11 to 15 and this is called the test set. We used a random forest classifier
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implemented in Weka 3.8.3 release [13]. Random forest is a powerful classification
model that can naturally handle multiclass classification, robust against nonlin-
ear decision boundaries, and has a relatively low training cost. Therefore, we
believe, it would be wise to validate our dataset with a random forest classifier.
The training set is used for 10 fold cross validation using each of the features
described in Subsect. 4.2. Finally, the best features, i.e. the 3000 dimensional
relative times series, and 200 (100 + 100) dimensional relative median samples,
are used for classification on the test set. All the experiments are repeated twice,
first time for 7 material types and second time for 4 clusters formed by group-
ing the materials based on their thermal behavior. Cluster 1 is blackboard and
concrete, cluster 2 is polyester fabric, cluster 3 is cotton cloth, and class 4 is
drywall, laminate, and wood.

5 Results

We performed 10 fold cross validation on the training data set. The results of
the experiments are reported in Figs. 4 and 5. Compared to the 7 class classifi-
cation setup, the 4 class setup improved the best detection accuracy by 21.5%.
This is mainly because we cluster together the materials with confusing thermal
decay patterns into the same classes. As it can be seen, the raw relative time
series feature received the best classification accuracy in both 7 class and 4 class
classification setups. However, 200-dimensional relative median samples feature
also received high detection rates which are very close to the highest accuracy.
While it can be computationally expensive to train a classifier with the 3000-
dimensional raw relative time series feature, training with the relative median
sample feature is comparatively economical. Therefore, it can serve as a balance
between classification accuracy and computational expense. Plots in Fig. 5 sug-
gest that increasing k from 10 to 100 in median sample features and relative
median samples features improve the detection rates around 3% for both 7 class
and 4 class classification setups.

While the cross-validation on the training set is used only for the selection of
the best performing features, the actual validation of our system is performed in
a user-independent fashion by training the model using the complete training set
and measuring the accuracy on the test set. Please note, our training set contains
the data from user 1 to 10, and the test set contains the data from user 11 to 15.
The best two performing features, raw relative time series, and 200-dimensional
relative median samples are selected for the same. The confusion matrices in
Fig. 6 shows the performance of both the features in two different classification
scenarios. The confusion matrices in Fig. 6(a), and (b) support our earlier pre-
diction that thermal signatures of materials within classes blackboard-concrete
and drywall-laminate-wood are similar. That is the reason that the materials
within the same classes are interchangeably getting falsely detected. Irrespective
of that, we received around 52% and 75% accuracy in 7 class and 4 class sce-
narios. Compare to the random guess probability of 14.28% and 25%, this is a
significant achievement. Moreover, user samples of the training set and the test
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Fig. 4. Classification accuracy on the training set is reported (a) for 7 material classes
and (b) 4 material classes. Columns 2 to 6 are accuracies for raw time series, rela-
tive time series, polynomial coefficients, median samples, and relative median samples
features respectively. All numbers are in percentage.

set are completely separated. This strongly suggests that our algorithm is user-
independent i.e. given it trained on enough training examples, it can produce
good detection accuracy on unknown test data produced by users outside of the
subjects in the training set.

6 Discussion

In this paper, we proposed a multi-material detection algorithm that can classify
commonly available indoor materials into thermally equivalent clusters. To this
process, we employ a novel approach where a user has to briefly touch a surface
leaving its thermal finger impression on the material. The decaying heat pattern
of the finger impression is then analyzed in a machine learning framework to
identify the surface material. The work would be valuable especially for the
systems that allow users to use the natural surfaces as touch screen interfaces.
We demonstrated the capability of our method as we achieved 75% accuracy
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Fig. 5. Figure shows the accuracy of the training set on k-median samples and relative
k-median samples features. k varies from 10 to 100 with a stride of 10.

in classifying 7 different materials into 4 classes based on the similarity of their
thermal behavior. Moreover, we experimentally proved that our algorithm is
user-independent. There can be two major reasons behind this. First, our defined
task for the thermal finger impression is simple i.e. touching the surface material
for two seconds with the index finger. Therefore, the between users’ thermal
finger impression variations for the same material are less compared to between
material variations. Second, the heat decay patterns of a material surface are
only dependent on the amount of heat transferred to the surface. Since there is
not much variation in thermal finger impressions generated by different users,
the decay patterns of the same material type are also not user dependent. This
implies that our algorithm does not need to train on new user data to successfully
able to predict a material type.

As part of the future work, we want to combine RGB color images with ther-
mal finger impression to further improve our classification accuracy. We believe
that the surface texture information in the color domain can assist our classifier
with complementary information that would help to improve the prediction capa-
bility of our system. Furthermore, we have plans to benchmark our algorithm
against different parameter changes such as room temperature and humidity
differences, user hand temperature changes, within-class material variances such
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Fig. 6. Figure shows the confusion matrices computed on the test set. Accuracy is
computed on (a) relative time series and 7 classes, (b) 200 dimensional relative median
samples and 7 classes, (c) relative time series and 4 classes, and (d) 200 dimensional
relative median samples, and 4 classes. All numbers are in percentage values.

as the same material with different textures. Finally, we would want to use dif-
ferent classification models such as the support vector machine, and deep neural
network.
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