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Abstract—Large-scale open source software bug repositories
from companies such as Mozilla, RedHat, Novell and Eclipse
have enabled researchers to develop automated solutions to bug
triaging problems such as bug classification, duplicate classifica-
tion and developer assignment. However, despite the repositories
containing millions of usable reports, researchers utilize only
a small fraction of the data. A major reason for this is the
polynomial time and cost associated with making comparisons
to all prior reports. Graphics processing units (GPUs) with
several thousand cores have been used to accelerate algorithms
in several domains, such as computer graphics, computer vision
and linguistics. However, they have remained unexplored in
the area of bug triaging. In this paper, we demonstrate that
the problem of comparing a bug report to all prior reports
is an embarassingly parallel problem, that can be accelerated
using graphics processing unit (GPUs). Comparing the similarity
of two bug reports can be performed using frequency based
methods (e.g. cosine similarity and BM25F), sequence based
methods (e.g. longest common substring and longest common
subsequence) or topic modeling. For the purpose of this paper we
focus on cosine similarity, longest common substring and longest
common subsequence. Using an NVIDIA Tesla K40 GPU, we
show that frequency and sequence based similarity measures are
accelerated by 89 and 85 times respectively when compared to a
pure CPU based implementation. Thus, allowing us to generate
similarity scores for the entire Eclipse repository, consisting of
498, 161 reports in under a day, as opposed to 83.4 days using
a CPU based approach.

I. INTRODUCTION

Nearly all large-scale software projects contain flaws or

defects, otherwise known as software bugs. Bug tracking

systems, such as Bugzilla and JIRA, allow both developers

and users to submit textual bug reports on observed failures.

Bugzilla is currently being used by companies such as RedHat,

Mozilla, Eclipse and Novell [1]. As shown in Table I, such

repositories already contain millions of bug reports and are

receiving several hundred new reports each day. As new bug

report comes in, the development team must determine if the

issue at hand is an actual problem, an issue that cannot be

replicated (WORKSFORME), an issue that will not be fixed

as it is beyond the scope of the project (WONTFIX), an issue

that does not have sufficient information (INCOMPLETE), an

issue describing a problem with a different system (INVALID),

or simply a duplicate of an existing bug report (DUPLICATE).
Open source bug tracking systems, such as Bugzilla, have

provided researchers with rich datasets from a variety of

software applications. The past decade has seen the emergence

of research tracks in assigning new or duplicate labels to each

bug report (bug classification), identifying the original report

associated with each duplicate report (duplicate classification),

and determining the developer most qualified to fix the prob-

lem (developer assignment). For the scope of this paper, we

define bug triaging as either the manual or automated process

associated with bug classification, duplicate detection and

developer assignment. Even though the datasets illustrated in

Table I contain millions of problem reports, most researchers

continue to use small subsets of the data as shown in Table II.

The foremost reason for this is the time and cost associated

with mining large-scale repositories [8]. The complexity of

mining large-scale repositories arises due to the fact that each

bug report must be compared to all prior reports. For a given

repository of size n, the total number of comparisons needed

is given by 1+2+3+4+ ...+n−1 amounting to O(n2). For

a repository such as Mozilla, approximately 8×1011 compar-

isons must be made if a researcher is interested in generating

similarity scores for all reports within the repository.

The emergence of general purpose graphics processing

units or GPUs with several thousand processing cores has

enabled the acceleration of scientific computing algorithms

by several orders of magnitude. For example, the NVIDIA

Tesla K40 GPU contains 2880 cores and 12GB of memory

[2]. Originally introduced to accelerate rendering algorithms in

computer graphics [26], the GPU has now extended into sev-

eral branches of computer science such as computer vision [7],

[21], molecular modeling [29], and linguistics [14]. However,

it has remained unexplored in the domain of bug triaging

where each bug report is compared to all prior reports using

frequency-based (e.g. cosine similarity or BM25F), sequence-

based (e.g. longest common subsequence or substring) or topic

modeling methods. The problem of comparing each bug report

to all prior reports is an embarrassingly parallel problem,

as the comparisons can be made independent of each other,

Repository Reports Reports per day
RedHat 1, 357, 998 210
Mozilla 1, 287, 896 197
Novell 989, 610 233
Eclipse 498, 161 92

TABLE I
SIZE OF BUGZILLA REPOSITORIES (RETRIEVED ON: JULY 19, 2016
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thus making bug report matching a candidate for GPU-based

acceleration.

In this paper we present our analysis on the effects of ac-

celerating three common document similarity metrics, namely

cosine similarity, longest common substring and longest com-

mon subsequence, using an NVIDIA Tesla K40 GPU. Unlike

domains with static data sizes, each problem report consists

of a variable document length. As a result, we apply a

data driven approach for selecting a static array size for the

GPU. Our framework is tested on the Eclipse repository, and

provides a speed up of 85× for longest common substring and

subsequence, and 89× for cosine similarity when compared to

a pure CPU based implementation. Our approach can generate

similarity scores for all reports within the Eclipse repository

using three similarity metrics in under 24 hours.

The remainder of the paper is organized as follows. In

Section II we discuss the related work in open source bug

tracking systems, as well as emerging research using GPUs in

related fields. In Section III, we discuss the implementation

details used for developing the accelerated versions of the

algorithms. Section IV presents the results of accelerating the

similarity measures and provide comparisons to a purely CPU

based approach. We provide validity threats in Section V and

conclude the paper in Section VI with potential directions for

future work.

II. RELATED WORK

A. Bug Triaging

Research in automated bug triaging has focused on de-

termining if a report is new or duplicate [11], [16], [18],

determining the original report associated with each known

duplicate [18], [33], [31], [30], [32], [25], [27], [10], [9],

[20] and determining the developer most qualified to fix a

problem [28], [12], [24], [5], [15], [6] using a variety of

frequency, sequence and topic modeling based methods. Each

Dataset Range Recall

Eclipse Jan 2008 - Dec 2008 68% [31]
Eclipse Start - Dec 2009 46% [32]
Eclipse Jan 2008 - Dec 2008 78% [30]
Eclipse Start - Dec 2007 71% [30]
Firefox Apr 2004 - Jun 2004 93% [33]
Firefox Apr 2002 - Jul 2007 53% [31]
Firefox Apr 2002 - Jul 2007 70% [31]
Firefox Start - Jun 2010 53% [27]
Firefox Start - Mar 2012 68% [9]
Firefox Start - Sept 2005 50% [18]
Mozilla Jan 2010 - Dec 2010 68% [30]
Mozilla Feb 2005 - Oct 2005 51% [20]
Eclipse Jan 2002 - Sept 2002 30% [15]
Eclipse Sept 2004 - May 2005 64% [6]
Firefox Sept 2004 - May 2005 57% [6]
Eclipse Oct 2005 - May 2006 70% [5]
Firefox Feb 2006 - Sept 2006 75% [5]
Eclipse Apr 2001 - Nov 2008 71% [24]
Eclipse Oct 2001 - Mar 2010 86% [12]
Mozilla May 1998 - Mar 2010 84% [12]
Eclipse Dec 2006 - Jan 2007 89% [28]
Mozilla Dec 2006 - Jan 2007 59% [28]

TABLE II
SIZE OF REPOSITORIES BEING USED IN BUG TRIAGING RESEARCH

contribution to the domain has been strictly performed using

a CPU based approach, or a cluster based approach [11].

B. GPU Acceleration

GPUs have traditionally been used to accelerate rendering

algorithms in computer graphics [26]. General purpose GPUs

have been used in the past decade to accelerate algorithms

on point-level processing in computer vision [7], molecu-

lar modeling [29], convolutional neural networks for object

detection and recognition [21], and deep neural networks

for speech recognition [17]. To the best of our knowledge,

there are no approaches on accelerating bug triaging using

GPUs. Approaches most allied to our work that perform

GPU-based acceleration fall in the area of text mining and

document retrieval. Zhang and Cui [35] provide an approach

to perform term frequency based comparisons. Their performs

over-subscription of tasks to the GPU cores to ensure high

utilization. Unlike our approach, they do not normalize for

document size. Kysenko et al. [23] perform non-negative

matrix factorization to cluster documents using a GPU. In

[34], the authors perform the initial IO-bound operations of

text mining approaches using a distributed framework on

CPUs, and implement further compute-bound operations on

distributed GPUs. In [19], the authors use the Bloom filter

[13] to perform document retrieval comparisons. In general,

the problem of performing document comparisons on a GPU

is rendered challenging due to the fact that document sizes

may not be known a priori. In this work, we determine the

optimal container size to store the problem report data on

the GPU as the quantity that simultaneously optimizes the

shared memory utilization, GPU multiprocessor occupancy,

and number of reports processed at a given time. We use a

data-driven approach to validate the optimal container size.

While the authors of [22] provide an approach to accelerate

the longest common subsequence approach used in our work

for DNA matching in computational genomics, their approach

performs comparisons on the four building blocks of the DNA

alphabet, i.e., the bases A, G, C, and T. The problem reports

used in this work have up to 67 building blocks, consisting of

the 26 letters converted to lower case, 10 numerals, and up 31
non-alphanumeric symbols occuring on an English language

keyboard. The higher number of building blocks renders the

character level comparisons for word matching in longest

common subsequence computations far more time-intensive.

Additionally, we are the first to implement the longest common

substring approach on a GPU for automated bug triaging.

III. FRAMEWORK

Our GPU accelerated framework was developed using

an NVIDIA Tesla K40 GPU consisting of 2880 cores and

12GB of memory installed on a 10 core Intel powered Asus

ESC4000-G3 server with 128GB of RAM.

A. Data Preprocessing

The Eclipse repository chosen for our study consists of

all bug reports submitted from the start of the project until
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Fig. 1. Effect of stemming and rare word removal on dictionary size.
Application of stemming and rare word removal reduces the size of the
dictionary by one third.

February 5, 2016 and comprises of 487, 119 reports. We first

sanitize the data by applying tokenization, stop word removal,

and stemming (using the Porter stemming algorithm [3]). Next,

we generate a dictionary of unique words contained within

the repository and remove any words that occurred less than

3 times. These words consist of misspellings, garbage words

such as “aaaaaaaaaaa”, or words transliterated from a foreign

language. This step reduces the dictionary size to increase

efficiency of the computations in Subsection III-B, and reduces

noise. Figure 1, below, shows the effects of stemming and rare

word removal on the final size of the dictionary.

Once the final dictionary is generated, we replace each word

with a unique 2-byte integer identifier corresponding to the

index of the word in the sorted dictionary. This ensures that

each word is the same length, and allows for a lossless data

compression ratio of 2.49 : 1, decreasing the total size of all

reports from 263 MB to 106 MB.

B. Allocating Static Array Size

GPU memory requires allocation of constant size arrays.

While the data compression in Section III-A converts each

word to a fixed length, each report contains a variable number

of words. We refer to the number of words in a report as the

description length. The optimal choice of maximum descrip-

tion length for initializing the arrays corresponds to one that

minimizes information loss while maximizing the utilization

of memory space and the number of reports processed con-

currently. The Tesla K40 GPU consists of 15 multiprocessors,

each of which contains 192 CUDA cores. The CUDA program

is partitioned into multithreaded blocks. Threads in a single

block execute simultaneously on a single multiprocessor. Each

multiprocessor can execute upto a maximum of 2048 threads,

while each block can be allocated a maximum of 1024 threads.

Additionally, each multiprocessor has 49152 bytes of shared

memory. Each thread in our approach computes the match

between two reports. We allocate n2 threads to each block,

where n reports are compared to n other reports. This leads

to there being 2n reports on each block. Suppose the maximum

description length is N . Then since each word has a 2-

byte identifier, the maximum number of bytes available per

report is 2N bytes. Simultaneously maximizing the use of

shared memory, the thread utilization (or occupancy) of each

multiprocessor, and the number of reports processed at a single

time requires that

49152
bytes

processor
= 2

bytes

word
×N

words

report
× 2n

reports

block
(1)

× 1 block

n2 threads
× 2048

threads

processor
, or,

N = 6n. (2)

Since the maximum number of threads per block for the

Tesla K40, i.e., the maximum value of n2, is 1024 or 32×32,

we analyzed the effect of using n2 = 8 × 8, 16 × 16, and

32× 32 threads per block, amounting to 2n = 16, 32, and 64
reports respectively. With 8 reports, the number of threads per

block is 64, requiring 32 blocks to maximally utilize all 2048
threads of the multiprocessor. However, the Tesla K40 can

run a maximum of 16 blocks at a single time. With 32 × 32
threads or 64 reports per block, 2 blocks run on the same

multiprocessor at a single time, leading to a maximum of 64×2
or 128 reports being worked on by a single multiprocessor at a

given time instant. However, with 16×16 threads or 32 reports

per block, 8 blocks run on the same multiprocessor, leading to

a maximum of 32×8 or 256 reports being processed at a single

time instant. Therefore, using 16 × 16 threads or 32 reports

maximizes the occupancy, i.e., uses all 2048 threads per

multiprocessor by running 8 blocks at a time, and maximizes

the number of reports processed, while simultaneously filling

49152 bytes of shared memory. At n = 16, N turns out to

be 96 words per report according to Equation (2). We use

the last word as a placeholder for thread metadata, yielding a

maximum of 95 words per report.

We apply a data-driven approach to validate the optimal ar-

ray size by determining the distribution of description lengths

within the repository as shown in Figure 2. The bar chart at

the top of Figure 2 shows the frequency of reports versus

report description length. The graph at the bottom of Figure 2

shows the percentage of reports shorter than the description

length indicated by the x-axis. Both plots in Figure 2 share

the x-axis. The bar chart demonstrates the typical heavy-

tailed distribution expected of large repositories where a larger

percentage of reports have smaller lengths. This observation

is also borne out by the asymptotic rise of the curve at the

bottom of Figure 2. Figure 2 shows that 84.7% of reports are

shorter than 95 words, i.e., that only 15.3% of all reports are

affected by this choice of report length. Additionally, reports

consisting of more than 95 words generally contain execution

trace information which may not be found in all reports within
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Fig. 2. The top graph shows the Eclipse description length distribution as a
function of the report size. From the bottom graph we note that 84.7% of the
reports within Eclipse have 95 words or less.

the repository and are hence excluded from the similarity

metrics.

We use the traditional tiled matrix approach to implement

the GPU accelerated algorithms. Since O(n2) comparisons are

made for each comparison method, the output exhausts the

global memory of the GPU when analyzing more than 30, 000
reports at a time using a single layer of tiling. To address

this issue, we add a secondary layer of tiling such that each

kernel compares 8192 reports to 8192 other reports before

transferring data back to the system memory and beginning

another kernel. Although this method requires additional data

transfers, it is able to handle any number of comparisons

without exhausting the GPU memory. Figure 3 illustrates this

concept with kernels of size 8 × 8, where the colored grids

represent the comparisons made by the first three kernels.

IV. GPU ACCELERATION RESULTS

a) Baseline CPU Results: To perform a fair compari-

son of our GPU accelerated algorithms against a traditional

Fig. 3. Secondary tiling for comparing more than 30, 000 reports. Secondary
tiling is needed to prevent the GPU global memory from being exhausted.

Repository Reports Comparisons Needed Runtime
Eclipse 1, 000 500, 500 29 seconds
Eclipse 10, 000 50, 005, 000 48 minutes
Eclipse 20, 000 200, 010, 000 3.2 hours

Eclipse 498, 161 1.24× 1011 83.4 days

Mozilla 1, 287, 896 8.29× 1011 557.7 days

TABLE III
BASELINE RUNTIMES FOR USING A SINGLE CPU CORE.

CPU implementation, we implemented versions of CPU al-

gorithms for cosine similarity, longest common subsequence,

and longest common substring from [27] and [9], where strings

were replaced by 2-byte integers. We designed each algorithm

to be purely sequential, i.e., to use a single CPU core.

Baseline runtimes for the CPU-based sequential algorithms

were obtained using an Asus ESC4000-G3 server with an

Intel Xeon E5-2660-v3 10 core processor and 128GB of RAM.

Each algorithm was run on on core of the 10 core processor. As

shown by Table III, we obtained runtimes for the first 1, 000,

10, 000 and 20, 000 reports from the Eclipse repository and

extrapolated to the complete Eclipse and Mozilla repository.

Researchers interested in generating similarity scores for the

entire Eclipse and Mozilla repository using the three methods

would require 83.4 days and 1.5 years respectively. While a

cluster based or cloud based approach can expedite this pro-

cess, the monetary cost and data transfer latency far outweigh

the benefits of performing computations on the cloud [8].

b) Comparison between GPU and CPU-based Ap-
proaches: In Figure 4 we compare the runtimes of the CPU-

based sequential version and GPU-based parallel version of

cosine similarity. For the sequential approach we provide run-

times for the first 20, 000 reports to illustrate the computational

overhead. We provide runtimes for the first 100, 000 reports
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Fig. 4. Runtimes of the GPU-based parallel algorithm and CPU-based
sequential algorithm for cosine similarity.

Fig. 5. Runtimes of the GPU-based parallel algorithm and CPU-based
sequential algorithm for longest common subsequence and substring.

using the parallel approach. Additionally, we fit a regression

line to the sequential and parallel algorithms. The GPU-based

parallel cosine similarity approach provides a speed up of 89×
when compared to the CPU-based sequential version.

In Figure 5 we compare the runtimes for the CPU-based

sequential and GPU-based parallel algorithms for the longest

common subsequence and substring approaches. The longest

common subsequence and substring can be computed in par-

allel when traversing through the two documents. We provide

runtimes for the first 20, 000 reports using the sequential

approach, and the first 200, 000 reports using the parallel

approach. The GPU-based parallel algorithm provides an 85×
speed up when compared to the CPU-based sequential version.

The acceleration achieved for cosine similarity is signif-

Fig. 6. Computational time projected to compute similarity scores using all
three methods on the complete Eclipse dataset

Repository Total Reports CPU single core GPU
Eclipse 498, 161 83.4 days 23.3 hours
Mozilla 1, 287, 896 557.7 days 6.5 days

TABLE IV
PROJECTED RESULTS FOR ECLIPSE AND MOZILLA REPOSITORY.

icantly higher than both the longest common subsequence

and substring algorithms. This is expected as the dot product

between the two reports is a computationally inexpensive

operation. The longest common substring and subsequence

algorithms utilize dynamic programming and perform O(mn)
operations to compare two reports of lengths m and n.

c) Projected Results: As shown in Figure 6, we deter-

mine the total time required to generate similarity match scores

using all three methods by fitting polynomial regression lines

to both the sequential and parallel similarity algorithms. The

GPU accelerated approach can generate similarity matches for

the entire Eclipse repository in under 24 hours. In Table IV

we extend the projection to the Mozilla dataset and determine

that the sequential approach will take 557.7 days, while the

parallel approach completes in 6.5 days.

V. THREATS TO VALIDITY

Our current accelerated approach has been tested on the

Eclipse dataset, in future we will test the approach on larger

datasets from Mozilla, RedHat and Novell to reduce potential

external validity threats. The chosen document length thresh-

old may not be applicable to other datasets, in future we will

will explore the distribution of document sizes in datasets

from Mozilla, RedHat and Novell. Finally, the Tesla K40 GPU

chosen for this study has 2880 cores and a maximum memory

capacity of 12GB. The acceleration numbers reported may not

be applicable to other GPUs. However, the ease of procuring

a Tesla K40 through the NVIDIA Hardware Grant program

will enable replication of our study [4].
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VI. CONCLUSIONS AND FUTURE WORK

Through an empirical study we demonstrate that existing

CPU based implementations of common similarity metrics,

such as cosine similarity, longest common subsequence and

substring, are inadequate when processing on bug repositories

with millions of reports. The time required to generate match

scores can take in the order of months or years. Using

GPU based implementations, we provide a speedup of 85×
for sequence based methods and 89× for frequency based

methods. This reduces the computation time from months and

years, to hours and several days. The task of automated bug

triaging is far from solved, by accelerating the process, we

can apply advanced fusion techniques that combine multiple

similarity measures in a matter of days as opposed to months.

Our GPU based approach can enable researchers to mine

complete repositories as opposed to small subsets. Further, the

cost of an individual GPU is far less than a cluster or cloud

based system.

In future we will develop GPU accelerated topic modeling

techniques and provide a complete suite of similarity metrics.

Additionally, we are currently in the process of obtaining

full repositories from Mozilla, RedHat and Novell to test the

effectiveness of our approach on much larger repositories.

Furthermore, we have recently obtained additional GPUs to

enable further parallelization and investigations on effectively

transferring data across GPUs.
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