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Abstract—In this paper we provide an approach to perform
seamless continual biometric authentication of users in virtual
reality (VR) environments by combining position and orientation
features from the headset, right hand controller, and left hand
controller of a VR system. The rapid growth of VR in mission
critical applications in military training, flight simulation, ther-
apy, manufacturing, and education necessitates authentication of
users based on their actions within the VR space as opposed to
traditional PIN and password based approaches. To mimic goal-
oriented interactions as they may occur in VR environments,
we capture a VR dataset of trajectories from 33 users throwing
a ball at a virtual target with 10 samples per user captured
on a training day, and 10 samples on a test day. Due to the
sparseness in the number of training samples per user, typical
of realistic interactions, we perform authentication by using
pairwise relationships between trajectories. Our approach uses
a perceptron classifier to learn weights on the matches between
position and orientation features on two trajectories from the
headset and the hand controllers, such that a low classifier score
is obtained for trajectories belonging to the same user, and a high
score is obtained otherwise. We also perform extensive evaluation
on the choice of position and orientation features, combination
of devices, and choice of match metrics and trajectory alignment
method on the accuracy, and demonstrate a maximum accuracy
of 93.03% for matching 10 test actions per user by using
orientation from the right hand controller and headset.

Index Terms—virtual reality, VR, biometrics, seamless, contin-
ual authentication

I. INTRODUCTION

The behavior of a person has been used as a mechanism

for biometric authentication in desktop environments using

keyboard [17], [30], [31] and mouse movements [1], [10],

in smart devices [21], [32], [26], [27], and more recently

in virtual reality (VR) systems [11], [23], [18]. VR systems

today are no longer solely used as recreational devices, and

are rapidly gaining acceptance in applications such as military

training [4], [22], [29], flight simulations [20], [6], ther-

apy [14], [19], [7], manufacturing [2], [5], and education [8],

[15]. Malicious users in mission critical applications can cause

irreparable harm, and it is necessary to continually authenticate

the user without the user needing to stop their activities. VR

authentication techniques that use PIN and pattern matching

methods [9], [34] are infeasible as once a PIN or password

is compromised, a malicious user has complete access to the

system. A periodic PIN or password entry system also intrudes

on the usability of the VR system. For example, a pilot teleop-

erating a drone using a VR headset cannot pause the drone in

the real world when the system needs to re-authenticate them.

Behavior-based approaches for authenticating users in virtual

environments have used head motions and blink patterns [24],

head movements to music [12], and bone conduction of sounds

through the skull [25] using Google Glass. These approaches

do not capture the broad range of actions that users may

perform in virtual environments.

We provide an approach that enables seamless biometric

authentication of users in virtual environments by combining

position and orientation features obtained by tracking the

trajectories of the VR headset, left hand controller, and right

hand controller as a person performs VR interactions. The

work of Mustafa et al. [18] performs authentication by using

head motion data generated by a user following a ball using

Google Cardboard without using hand controllers, which does

not represent the full range of interactions that users are likely

to perform in VR. Pfeuffer et al. [23] use classifiers such

as random forests and SVMs with higher-level aggregated

features such as the maximum, minimum, standard deviation,

and mean obtained from low-level features such as device

motion, orientation, velocity, distance in virtual space, and

view direction. They provide authentication for motions such

as pointing, grabbing, walking, and typing with the highest

accuracy being 44.4%. In this work, we perform authentication

while emulating a real-world VR scenario where a large

quantity of annotated training data is unlikely to be obtainable

for a range of users. We record the right hand controller, left

hand controller, and headset for 33 subjects picking a ball in

VR and throwing it at a target, where each subject provides a

sparse set of 10 trajectories on a training day, and a set of 10

trajectories on a test day. We keep the days separate in order

to prevent priming or muscle memory from repetitive throws

from influencing authentication. Due to the sparseness of the

training set, classification approaches that treat each sample

independently, e.g., a supervised classifier that takes features

from the sample as input and provides user identity as output

as in Pfeuffer et al. [23], are unlikely to provide high accuracy,

as low-level features such as position and orientation over time

are likely to cause overfitting, while aggregated features may

not capture enough fine-scale detail to represent inter-class

uniqueness and intra-class consistency.

Rather than treat samples independently, our approach uses

pairwise relationships between trajectories obtained using sim-

ilarity matches that provide a low value when the trajectories

belong to the same user and a high value when they are

different. While the pairwise matches between trajectories

for a single feature, i.e., the position of the right hand

controller, have been used in Kupin et al. [11], our contribution

is to enable the use of pairwise matches between multiple

9

2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)

978-1-7281-5604-0/19/$31.00 ©2019 IEEE
DOI 10.1109/AIVR46125.2019.00012

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 05,2020 at 21:47:03 UTC from IEEE Xplore.  Restrictions apply. 



features such as position and orientation of the right hand

controller, left hand controller, and headset in authentication.

Our approach estimates weights of a linear combination of

the feature matches by training a perceptron classifier to learn

that matches from two trajectories belonging to the same user

should yield a low classifier score near 0, while matches

from trajectories belonging to different users should yield a

high score. We provide extensive analysis on the effect of

using just position, just orientation, and both position and

orientation, the influence of using various combinations of

the left hand controller, right hand controller, and headset

trajectories, and the contributions of various match metrics and

trajectory alignment methods on the accuracy. In contrast to

the approach of Kupin et al. [11], which provides an accuracy

of 83.64% on our dataset of 33 subjects, we obtain a maximum

accuracy of 93.03% for 10 test actions per user. This accuracy

is attained when orientation alone for the right hand controller

and headset are combined and matched using the distance

between the nearest neighbors across both trajectories aligned

by subtracting out their bounding box center.

II. RELATED WORK

Early approaches for authenticating users in virtual envi-

ronments adopted approaches from mobile authentication by

using PIN and 2D/3D pattern based methods [9], [34]. These

approaches do not enable seamless continual user authenti-

cation as the user would need to stop their activity to enter

their credentials using a PIN or password, nod to a question,

observe changing images, or move to an external stimulus

such as music. In the case of VR-based teleoperation [13],

it is infeasible and can be catastrophic to pause the real world

object being controlled to authenticate the user. To seamlessly

authenticate the user such that the task of authentication does

take impede the user’s actions we must use the user’s inherent

behavior within the VR application to perform authentication.

In Rogers et al. [24], infrared, gyroscope, and accelerometer

data from a Google Glass was used to authenticate users based

on blink and head movement patterns as a series of rapidly

changing images were displayed to the subject. Head move-

ment patterns as users are stimulated by external audio has

also been investigated as a method for VR authentication [12].

User head movements as responses to specific questions have

also been investigated as an authentication scheme for Google

Glass [33]. Work by Mustafa et al. [18] uses head movements

to identify Google Cardboard users by having subjects follow

virtual balls as they appear on the screen. A dataset of 23

subjects was collected with each subject following 25 balls

during each session with a total of 15 sessions per user. The

authors report an overall equal error rate of 7% using logistic

regression. These approaches do not incorporate data from

hand controllers, which play an essential role in realistic VR

interactions such as teleoperating a robot [13].

Work by Pfeuffer et al. [23] uses tasks such as point-

ing, grabbing, walking, and typing from the head and hand

controllers of an HTC Vive along with eye tracking data

from a Pupil Labs eye tracker to identify users. A dataset

of 22 subjects was collected with 260 trials per session per
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Fig. 1. Trajectories from the right hand controller, left hand controller, and
headset on the first day (dark) and the second day (light) demonstrating
variations between users, and consistency within user, for 5 of the 33 users
in our dataset. Trajectories also show translational misalignments, which are
best corrected in our work by subtracting the bounding box center.

subject for pointing, 260 for grabbing, 40 for walking, and

15 sentences with an average of 25.8 letters per sentence for

typing. The authors exclude the 3 left handed subjects and

report an overall accuracy of 44.44% by evaluating random

forest and support vector machine classifiers using higher-

level features of mean, maximum, minimum, and standard

deviation computed from low-level features such as device

motion, orientation, position, and velocity in the virtual space.

To obtain higher accuracies from sparser training data of 10

samples per user in our work, we use pairwise matching

techniques to express relationships between trajectories.

Work by Kupin et al. [11] uses a ball throwing task to

authenticate users in virtual environments by using positional

information of the dominant, i.e., right, hand controller and a

nearest neighbor matching technique. They obtain an accuracy

of 92.86% by comparing 10 throws for 14 subjects each on

a test day to 10 throws on a training day. While we use the

same task and experimental setup as Kupin et al. [11], we

combine matches from position and orientation features from

the headset and both hand controllers. The number of subjects

in our dataset at 33 exceeds prior VR biometric datasets.

III. DATA COLLECTION

We utilize the ball throwing application developed by Kupin

et al. [11] to collect data from 33 right-handed subjects using

an HTC Vive system. We collect both 3D position and 3D

orientation data for 135 time samples at 45 fps from the

headset, left hand controller, and right hand controller. To

prevent priming, we collect data in two sessions separated by

a minimum of 24 hours with 10 throws collected during each

session. Prior to the VR activity, we record the gender, prior

experience in VR, and prior experience in throwing sports for

each subject as part of our demographic data. As shown in

Table I, we obtain an equal proportion of subjects with and

without throwing sports experience and with no/limited and

moderate/high VR experience. To reduce variability caused

by subject motion, we asked each subject to stand on a white

‘X’ marked in the virtual space. We instructed them to lift a

ball from a virtual pedestal and attempt to hit a virtual target

marked on the wall in front of them. Figure 1 shows right
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hand controller, left hand controller, and headset trajectories

from 5 subjects in our dataset.

TABLE I
SUMMARY OF DEMOGRAPHICS FOR OUR DATASET. OUR DATASET

CONTAINS AN EVEN SPLIT OF USERS WITH AND WITHOUT (NO/LIMITED)
VR EXPERIENCE AS WELL AS EXPERIENCE IN THROWING SPORTS.

Number of subjects 33

Number of female subjects 7
Number of male subjects 26
Number of subjects with no VR experience 9
Number of subjects with limited VR experience 8
Number of subjects with moderate/high VR experience 16
Subjects with no throwing sports experience 17
Subjects with throwing sports experience 16

IV. TRANSLATIONAL ALIGNMENT OF TRAJECTORIES

While all trajectories start near a common spatial point, i.e.,

the location of the ball on the pedestal, differences in the ex-

tension of the arm of the user may induce translational offsets

in the trajectories. We align each trajectory by subtracting out

a center point computed from the trajectory. In Section VII, we

compare the results of performing no subtraction, subtracting

the mean of the points, i.e., the centroid, subtracting the

center of the bounding box, and subtracting the centroid

and bounding box center computed only for the x and z
coordinates to preserve height differences in the y direction.

V. MATCH METRICS USED TO EVALUATE PROXIMITY

BETWEEN TRAJECTORIES

Due to differences in wait times, corresponding points

across the two trajectories do not yield a close match, as shown

in Kupin et al. [11]. We use three types of distance metrics,

discussed in Subsections V-A to V-C, to evaluate the proximity

between two trajectories aligned to each other using one of the

methods in Section IV. In Subsections V-A to V-C, T∗ refers

to a trajectory, p∗ refers to a time series of 3D point positions

for T∗, while q∗ refers to a time series of 3D point orientations

for T∗ expressed as unit quaternions. Here ∗ may be 1 for the

first trajectory or 2 for the second trajectory. The ith point on

p∗ or q∗ is referred to using time series notation as p∗[i] or

q∗[i] respectively, where p∗[i] ∈ R
3 and q∗[i] ∈ SO

3.

A. Match Between Nearest Trajectory Points
For the ith point on the first trajectory T1, we estimate the

nearest point on the second trajectory T2 by computing the

sum-squared Euclidean distance between the ith point position

p1[i] on T1 and the jth point position p2[j] on T2 as

d(p1[i],p2[j]) = ‖p1[i]− p2[j]‖2, (1)

and obtaining the index of the nearest point ji on T2 as

ji = argmin
j

d(p1[i],p2[j]). (2)

To maintain symmetricity, we similarly compute the index of

the nearest point lk on T1 to the kth point on T2 as

lk = argmin
l

d(p2[k],p1[l]), where (3)

d(p2[k],p1[l]) = ‖p2[k]− p1[l]‖2.

The nearest-neighbor distance dnn
p (p1,p2) between T1 and T2

in terms of point positions is obtained by adding individual

nearest-neighbor distances for both trajectories over N points

per trajectory as

dnn
p (p1,p2) =

∑N
i=1 d(p1[i],p2[ji])

+
∑N

k=1 d(p2[k],p1[lk]). (4)

Equation (4) is the same metric used for trajectory matching

in Kupin et al. [11]. We obtain the nearest-neighbor match

dnn
o (p1,p2) between T1 and T2 in terms of orientations as

dnn
o (p1,p2) =

∑N
i=1

(
1− 〈q1[i],q2[ji]〉2

)

+
∑N

k=1

(
1− 〈q2[k],q1[lk]〉2

)
. (5)

In Equation (5), the notation 〈·, ·〉 refers to the cosine of the

angle between the quaternions, which for close quaternions is

high, i.e., near 1. The notation 1−〈·, ·〉2 enables a lower value

to represent higher proximity.

B. Match Between Trajectory Points and Nearest Projections

While the distance between the nearest neighbors on both

trajectories provides a good approximation of distance be-

tween the trajectories, the closest position on T2 to a point

on T1 corresponds to a projection onto a line segment joining

two points, rather than a particular point. For the ith point on

T1 with position p1[i], we obtain the position of its projection

pij onto the line segment between point positions p2[j] and

p2[j + 1] on T2 as

pij = αijp2[j] + (1− αij)p2[j + 1]. (6)

The value of the interpolation coefficient αij is given as

αij = clamp
(

(p2[j+1]−p1[i])
T (p2[j+1]−p2[j])

‖p2[j+1]−p2[j]‖2 , 0, 1
)
, (7)

where the ‘clamp’ function truncates the value of αij to 0 if

αij ≤ 0 and to 1 if αij ≥ 1 so as to restrict the projection from

lying outside the line segment joining p2[j] and p2[j+1]. The

index j�i of the point on T2 that starts the line segment with

the nearest projection to p1[i] is given as

j�i = argmin
j

‖p1[i]− pij‖2 , (8)

where the term under the minimization represents the distance

between p1[i] and its projection pij . The best interpolation

coefficient α�
ij and nearest projection p�

ij are obtained by

replacing ji with j�i in Equations (6) to (7). To maintain

symmetricity, we obtain the best coefficient α�
kl and best

projection p�
kl on T1 for the kth point position p2[k] on T2

by interchanging 1 and 2, and substituting k for i, and l for

j in Equations (6) to (8). We obtain the nearest-projection

distance in point positions dnp
p (p1,p2) between the trajectories

by summing individual Euclidean distances from the position

of each point on one trajectory to the nearest projection on

the other trajectory as

dnp
p (p1,p2) =

∑N
i=1

∥∥p1[i]− p�
ij

∥∥2

+
∑N

k=1 ‖p2[k]− p�
kl‖

2
. (9)
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Data: Matrix D of running distances.

Result: Set I of 2-tuples, where the first element in each

2-tuple is an index to a matched point in p1 and

the second element is an index to a matched

point in p2.

I ←− {N,N}, i←− N , j ←− N .

while i > 0 & j > 0 do
(i+, j+)←− argmin

(ı̃,j̃)

D[̃ı, j̃], where

(̃ı, j̃) ∈ {(i− 1, j), (i, j − 1), (i− 1, j − 1)}.
if i > 0 & j > 0 then
I ←− I ∪ {(i+, j+)}, i← i+, j ← j+.

end
end

Algorithm 1: Algorithm to generate indices for matched

pairs using dynamic time warping.

To obtain the nearest-projection distance dnp
o (q1,q2) between

the orientations q1 and q2 of the trajectories T1 and T2, we

first obtain the orientation q�
ij at the nearest projection on T2

for the ith point on T1 as

q�
ij = q2[j

�
i ]

(
q2[j

�
i ]
−1q2[j

�
i + 1]

)α�
ij , (10)

and the the orientation q�
kl at the nearest projection on T1 for

the kth point on T2 as

q�
kl = q1[l

�
k]

(
q1[l

�
k]
−1q1[l

�
k + 1]

)α�
kl . (11)

In Equations (10) and (11), the right hand side represents a

spherical linear interpolation [28] between the best adjacent

orientations q2[j
�
i ] and q2[j

�
i +1] in q2, and q1[l

�
k] and q1[l

�
k+

1] in q1. We then express dnp
o (q1,q2) as

dnp
o (q1,q2) =

∑N
i=1

(
1− 〈q1[i],q

�
ij〉2

)

+
∑N

k=1

(
1− 〈q2[k],q

�
kl〉2

)
. (12)

C. Match Using Dynamic Time Warping (DTW)

DTW [3] uses dynamic programming to match trajectories

with varying speeds while preserving index order. DTW main-

tains a matrix D ∈ R
N×N , where the element D[i, j] of the

matrix represents the running sum of the distance between the

trajectories up to the position of the ith point p1[i] in T1 and

the jth point p2[j] in T2, and is given by

D[i, j] =min
(ı̃,j̃)

D[̃ı, j̃], where (13)

(̃ı, j̃) ∈ {(i− 1, j), (i, j − 1), (i− 1, j − 1)}.
The matrix is initialized to 0 prior to start, and filled by

iterating over i ∈ [2, N ] and j ∈ [2, N ]. The DTW distance

ddtw
p (p1,p2) between positions of the trajectories is given by

the last element in the matrix, i.e., ddtw
p (p1,p2) = D[N,N ].

To obtain the DTW match ddtw
o (q1,q2) between orientations

of the trajectories, we obtain a set I of matched index pairs

between p1 and p2, generated according to Algorithm 1 [3].

We express ddtw
o (q1,q2) as the sum of the matches between

orientations related through the matched pairs in I, i.e., as

ddtw
o (q1,q2) =

∑
(i,j)∈I

(
1− 〈q1[i],q2[j]〉2

)
. (14)

VI. PERCEPTRON-BASED LEARNING OF OPTIMAL

WEIGHTS ON MATCHES

To match an action for a user comprised of trajectories for

the right hand, left hand, and head to actions in a library,

we learn a set of weights on combining the position and

orientation feature distances from trajectory matches for the

three body parts. We perform learning using a training set of

trajectories on the first day for every user, and we perform

weighted matching and user authentication using the a test set

of trajectories from the second day.

During the training phase, given n training right hand,

left hand, and head trajectories per user for P = 33 users,

we align each trajectory using one of the five alignment

methods discussed in Section IV, and we match each body

part trajectory to every trajectory for the same body part using

one of the three matching approaches discussed in Section V.

The matching provides a set of (Pn)2 matches for right hand

position d∗p-r, right hand orientation d∗o-r, left hand position

d∗p-l, left hand orientation d∗o-l, head position d∗p-h, and head

orientation d∗o-h, where ∗ may be ‘nn’ for nearest neighbors,

‘np’ for nearest projection, or ‘dtw’ for DTW. We learn

weights wf and bias b for a perceptron classifier,

y = σ
(∑

f∈F wfd
∗
f + b

)
, (15)

where the set F represents a combination of the position and

orientation feature matches from the three body parts, and σ(·)
represents the perceptron activation function. In this work, we

analyze the following combinations for F : (1) position (p) and

orientation (o) of all body parts, i.e., right (r), left (l), and head

(h), where F = {p-r, o-r, p-l, o-l, p-h, o-h}, (2) position only

of all body parts, i.e., F = {p-r, p-l, p-h}, (3) orientation only

of all body parts, i.e., F = {o-r, o-l, o-h}, (4) position and ori-

entation of sets of two body parts, i.e., F = {p-r, o-r, p-l, o-l},
{p-r, o-r, p-h, o-h}, or {p-l, o-l, p-h, o-h}, (5) position only of

sets of two body parts, i.e., F = {p-r, p-l}, {p-r, p-h}, or

{p-l, p-h}, (6) orientation only of sets of two body parts, i.e.,

F = {o-r, o-l}, {o-r, o-h}, or {o-l, o-h}, and (7) position and

orientation of one body part, i.e., F = {p-r, o-r}, {p-l, o-l}, or

{p-h, o-h}. Summing together all choices for Ffrom (1) to (6)

gives us 15 feature sets. We use the hyperbolic tangent sigmoid

as the activation function σ(·) in this work. The target for the

output y is 0 when the trajectories matched are from the same

user, and 1 when the trajectories are from different users. We

use scaled conjugate gradients implemented in MATLAB to

train the perceptron.

During the test phase, given m right hand, left hand, and

head trajectories per user for the P users, we align each tra-

jectory using the same alignment method used during training,

and we match each body part trajectory in the test set to all Pn
trajectories for the same body part in the training set using the

training match metric to obtain P 2mn matches for the right

hand position, right hand orientation, left hand position, left

hand orientation, head position, and head orientation. For each

test user action, we apply the perceptron classifier trained for

a feature set from the list above to the match values of all Pn
training user actions matched to the test action. We obtain the

best matching user as the user for the training action with
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the lowest value of the output in Equation (15), since the

likelihood of a user for a test action being the same as that of

a training action is high for a match close to 0.

VII. RESULTS

To understand how soon authentication can be performed

during a user action, we obtain identification results by varying

the number of trajectory points N . To evaluate the quantity of

training data needed to reliably authenticate a user, we perform

our accuracy computations by varying the number of training

actions per user n between 1 and 10, while keeping the number

of test actions m at 10 actions per user. We also evaluate how

many actions are needed to reliably authenticate a user at test

time by varying the number of test actions per user m from

1 to 10 while keeping the number of training actions, n at

5. We compute accuracies, i.e., percentage of total Pm user

actions that are correctly identified, for authenticating users

from their second day session actions using the 5 alignment

methods from Section IV, the 3 matching approaches from

Section V, and the 15 feature sets used to train the perceptron

in Section VI, together with the choices of N , n, and m. We

augment our feature sets with matching using position only,

and orientation only for a single body part, where a weighted

combination of features is not necessary, and the closest user

is represented by the user corresponding to an action with the

lowest match value. This provides a total of 21 feature sets.
We show the best results of our accuracy computations for

each of the 5 alignment methods and 3 matching approaches

as subplots in Figures 2 and 3. Figure 2 provides match results

when n is varied between 1 and 10 along the horizontal axis

of each bar chart, and m is 10, while Figure 3 provides match

results when n is kept at 5, while m is varied between 1 and

10 along the horizontal axis. The text in each bar represents

the best feature choice, i.e., position (p), orientation (o), or

both (po), the best combination of right hand controller (r),

left hand controller (l) and headset (h) trajectories, the best

choice of number of trajectory points N , and the best value

of the accuracy as a percentage. Figure 2 demonstrates that

using the bounding box center provides highest performance

for all three matching methods. As demonstrated in Figure 1,

without alignment, the trajectories are too far apart for a match.

The mean in the second column tends to yield lower results as

the mean may be weighted near higher density point concen-

trations, e.g., the start of the trajectory, and differences in wait

times influence the displacement of the mean. Alignment in

the XZ plane alone lowers accuracy, indicating that subjects

may show intra-user variations in the Y direction, which are

corrected by a full bounding box center alignment. Among the

matching metrics, the nearest neighbor match performs best,

while the nearest projection follows closely. DTW performs

worst indicating that misalignments during match detection in

DTW may propagate throughout the trajectories.
For all methods, the highest accuracies are generally ob-

tained when the right hand is combined with the head, likely

since the left hand may be involved in non-goal-oriented

motions during a ball-throwing activity. Additionally, highest

accuracies are obtained largely using orientation alone, fol-

lowed by using position and orientation together, indicating

that orientation is a stronger user signature than position during

ball-throwing, especially for the right hand and head. The

highest accuracy of 93.03% is obtained by using 9 training

trajectories with nearest neighbors, bounding box center align-

ment, 100 trajectory points, and orientation alone for the right

hand and head. We notice that even with 6 training trajectories

and higher we obtain accuracies of 89.70% and above, and

with 1 and 2 trajectories we show 61.82% and 72.12%

accuracy where chance is 3.03%. Figure 4 shows an extended

analysis with nearest neighbors and bounding box center for

all 21 feature sets, where N , the number of trajectory points

is varied along the horizontal axis of each graph, and each

plot line corresponds to one value of n. While the graphs

for the right hand and head demonstrate high accuracies for

using orientation or both position and orientation, we notice

that high accuracies may also be obtained if position alone

of the right hand is combined with the left hand, indicating

that users may swing their left hand in a unique fashion,

however they may shake it around in a random fashion which

influences orientation. We can authenticate users with around

80% accuracy and above starting at 60 trajectory points (i.e.,

within 1.33 seconds) and 6 or more training trajectories using

right + left position, right + head orientation, or right + head

and both position and orientation, all (right, left, and head)

orientation, or all and both position and orientation. The top-

left graph represents the approach of Kupin et al. [11], and

only attains a maximum accuracy of 83.64%.

Figure 6(a) shows the confusion matrix at the 93.03%

accuracy point discussed earlier. For all but 5 users, accuracies

are 90% and above. Of the 5 users, users 13 and 23 show

accuracies of 80%, user 8 shows 70%, user 14 60%, and user

27 shows the worst accuracy of 30%. As shown in Figure 6(d),

the head for user 27 on the second day does not follow their

head on the first day. As such, as shown in Figures 6(b)

and 6(d), user 27 tends to match with user 5 whose right

hand and head (red day 1 trajectory) are close to the day 2

trajectories of user 27. Figure 3 demonstrates similar trends

as Figure 2 when the number of test trajectories is varied,

with the exception that as more test trajectories are added, the

accuracy drops, with the drop generally being highest from 1

to 2 test trajectories. This may be attributed to users on the

second day developing a habituation to the VR system earlier

than on the first day. In future, we are interested in analyzing

the effect of habituation in VR systems, similar to the work of

Syed et al. [30] in smart devices. We observe higher accuracies

when the nearest projection is used, however, the performance

is comparable to nearest neighbors. The nearest projection and

bounding box center accuracy of 96.97% by using just the first

test day trajectory indicates that our approach can be used to

immediately authenticate users using a VR system for the first

time after providing an initial set of 5 training data samples.

Figure 5 reflects the trends in feature sets of Figure 4, with

orientation again showing dominance in distinguishing users.

VIII. DISCUSSION

We provide an approach to combine position and orientation

features from VR headsets and hand controllers to perform

13
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Fig. 2. Highest accuracies for the 5 alignment methods and 3 match metrics used in this work, when 10 test day trajectories per user are matched to 1
through 10 training day trajectories per user. Notation in each bar is as follows: choice of position (p)/orientation (o)/both (po) - device, i.e., right (r), left (l),
and head (h) combinations - number of trajectory points - accuracy as a percentage.
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Fig. 3. Highest accuracies for the 5 alignment methods and 3 match metrics used in this work, when 1 through 10 test day trajectories per user are matched
to 5 training day trajectories per user. Notation in each bar is as follows: choice of position (p)/orientation (o)/both (po) - device, i.e., right (r), left (l), and
head (h) combinations - number of trajectory points - accuracy as a percentage.
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Fig. 4. Results for using position, orientation, and both from various combinations of body parts using nearest neighbor matching and bounding box center
alignment when 10 test day trajectories are matched to 1 through 10 training day trajectories.
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Fig. 5. Results for using position, orientation, and both from various combinations of body parts using nearest projection matching and bounding box center
alignment when 1 through 10 test day trajectories are matched to 5 training day trajectories.

task based seamless continual authentication in virtual envi-

ronments. Our approach demonstrates a maximum accuracy of

93.03% for matching 10 test actions from 33 users by using

the orientation information from the the headset and right hand

controller, subtracting the bounding box center to align the

trajectories and using nearest neighbor matching. While we

demonstrate results using the HTC Vive, we expect similar

results from an Oculus Rift, Samsung Gear VR, or other VR

devices consisting of both a headset and hand controllers.

We provide results for both position and orientation and

demonstrate that using orientation by itself provides the best

results. However, there may be occasions when obtaining

orientation information may be impossible, for instance, if a

VR system does not contain a gyroscope. In this case, we
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Fig. 6. (a) Confusion matrix for highest accuracy when 10 test day trajectories
are compared to 9 training day trajectories using nearest neighbors. (b) Right
hand, (c), left hand, and (d) head trajectories for user 27 (blue day 2 and
green day 1) and their confounding user 5 (red day 1).

show that using position alone also provides acceptable results,

enabling our approach to be generalized to any VR device that

provides either position or orientation. Our work specifically

looks at the case where an impostor is likely to precisely

mimic the motions of a genuine user. In future research, we

will explore how attempts to make precise mimicry in more

complex actions, such as virtual drone flying or driving, which

may have higher intra-user variability will affect accuracy.

Intra-user variability may reduce accuracy when larger number

of users are added. Future work will investigate the role

of goal-orientedness in authentication accuracy, and examine

approaches to match trajectory segments to improve accuracy

for larger user sets. While we do not show it in this work,

the output of the neural network can be compared against a

threshold to detect impostors external to the training set as

shown in our companion demonstration paper [16].
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