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Figure 1: We study how behavior-based authentication and identification in VR is impacted by variability in VR behavior trajectories
across short, medium, and long timescales. While users show limited changes in behavior over short timescales, they show
differences in the extent to which they maintain consistency over longer timescales. User 11 demonstrates consistent motion
trajectories for the VR controllers and headset for a ball-throwing action. User 12 changes their ball-throwing approach from an
underhand motion on days 1 and 4 to an overhand throw several months later on days 212 and 214. We show that using long
timescale data to train users enhances learning-based identification and authentication using user behavior over multiple timescales.

ABSTRACT

Using the motion behavior of users in virtual reality (VR) as a bio-
metric signature has the potential to enable continuous identification
and authentication of users without compromising VR applications
if traditional passwords are acquired by malicious agents. Users
exhibit natural variabilities in behavior over time that influence their
body motions and can alter the trajectories of VR devices such as the
headset and the controllers. Behavior variabilities may negatively
impact the success rate of VR biometrics. In this work, we evalu-
ate how deep learning approaches to match input and enrollment
trajectories are influenced by user behavior variation over varying
time scales. We demonstrate that over short timescales on the or-
der of seconds to minutes, no statistically significant relationship
is found in the temporal placement of enrollment trajectories and
their matches to input trajectories. We find that on medium-scale
separation between enrollment and input trajectories, on the order of
days to weeks, median accuracy is similar within users who provide
input close and distant to enrollment data. Over long timescales on
the order of 7 to 18 months, we obtain optimal performance for short
and long enrollment/input separations by using training sets from
users providing long-timescale data, as these sets encompass coarse
and fine-scale changes in behavior.
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Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality; Security
and privacy—Security services—Authentication—Biometrics

1 INTRODUCTION

Virtual reality (VR) is seeing adoption across a wide gamut of
industries including distance education [7, 15, 18, 45, 53, 54], re-
tail [44, 56], personal finance [6, 55], remote teleoperation and
driving [19, 25, 36, 37, 47], and healthcare [5, 8, 9, 24, 26, 38, 49].
With the significant quantity of sensitive data that is likely to be
generated in widespread adoption of VR, authenticating users’ iden-
tities becomes paramount. While authentication using traditional
credentials has been explored for VR [2, 3, 10–14, 40, 59], the sys-
tem is compromised if an unintended agent acquires a user’s cre-
dentials. To combat the vulnerabilities of traditional authentica-
tion, a large number of approaches have emerged recently to ex-
plore identifying and authenticating users using their behavior in
VR [1, 17, 22, 27–29, 31–35, 39, 43]. These approaches define VR
behavior as actions or tasks performed during the use of VR appli-
cations, e.g., throwing a ball [1, 17, 32–34], pointing [43], shoot-
ing an arrow [22], bowling [22], moving their head to music [35],
viewing videos [31], filling questionnaires [31], and manipulating
objects [27–29, 39], and record the behavior by tracking the motions
of the user’s interactions with the devices of a VR system. Behavior-
based VR authentication research spans authentication within the
same VR system [1, 17, 22, 27–29, 31–35, 39, 43], as well as across
VR systems [33,34], with the latter enabling users to access multiple
systems without re-providing enrollment data. Behavior biometrics
enable unobtrusive and continuous authentication [29, 32].

The major challenge faced in using behavior-based biometrics for



identification and authentication is that human behavior changes over
time. Changes span a variety of timescales, ranging, for instance,
over short-term variations due to injury, system acclimatization over
medium timescales, and evolution of behavior over long timescales
due to aging. Changes may also occur if a user operates in a novel
environment, if they wear different clothing, or if they move to a new
VR system where they may require time to adjust to the physical
characteristics of the new system. The impact of behavior change
on authentication has been explored in non-VR environments, e.g.,
desktop [50], mobile [41, 50, 52], and gait from video [30]. Studies
in non-VR domains demonstrate that authentication rates fall with
increasing temporal differences [41, 50, 52], and with clothing and
footwear variations [30]. No prior work exists on evaluating the in-
fluence of behavior change in VR. Conclusions from prior studies in
non-VR environments cannot be directly transferred to VR. In con-
trast to desktop and mobile applications, VR environments involve
users performing actions that often mimic real-world interactions, so
that acclimatization may take lesser time. In contrast to methods that
use videos to capture real-world behavior, where clothing variability
can impact performance, VR-based biometrics largely correspond to
device trajectories that are clothing or footwear invariant. Given that
VR emulates real-world behavior unlike desktop/mobile applications
but lacks visual diversities that may impact real-world identification,
separate studies are needed to study behavior change in VR.

In this paper, we contribute the first work that studies the impact
of timescales of human action on success of VR behavior-based
authentication and identification using matching algorithms based
on deep neural networks. We use the datasets of Miller et al. [33,34]
and Ajit et al. [1] to measure how short, medium, and long timescales
affect identification and authentication effectiveness. The Miller et
al. dataset contains 41 users performing the a ball-throwing action
using 3 VR systems, with 10 trials per session across two sessions
per system. Each session is provided on a separate day. The Ajit et al.
dataset contains 33 users performing the same ball-throwing action
using a single VR system. Similar to the Miller et al. dataset, the Ajit
et al. set has users provide 2 sessions on 2 separate days and 10 ball-
throwing action trials per session. 16 common users provide using
the HTC Vive for both datasets. Following the protocol of Miller et
al., we provide analyses for identification and authentication within
the same system and across VR systems through three contributions.

1. To measure impact over short timescales on the order of sec-
onds to minutes, we study the relationship between temporal
placements of enrollment trajectories and their matches to in-
put trajectories. Our study enables analyzing whether user
behaviors undergo evolution on short time scales from the start
of usage to continued interaction, and whether within-session
evolutionary behavior impacts trajectory matching. For repeat-
able actions such as ball-throwing, we find no significant effect
of temporal placement of enrollment trajectories in identifying
matches for input trajectories.

2. To measure impact over medium timescales on the order of
days, we study identification accuracy for two clusters of users
in the dataset of Miller et al. We define clusters by identifying
users whose days between enrollment and input sessions fall
at or below a day threshold for one cluster and above the
threshold for the other cluster. We find that median accuracy
for users with temporal separation between sessions below and
above the threshold is similar.

3. To measure impact over long timescales on the order of weeks
and months, we study identification and authentication success
for the 16 common users across the datasets of Miller et al. [33]
and Ajit et al. [1]. We observe that long time periods introduce
coarse alterations to some users, and that users demonstrate
inter-user differences in trajectory modification for headsets
and controllers. Variable alterations in user interactions with
the devices cause matching algorithms trained using short tem-

poral separation in enrollment and input on the order of days to
generate low success at matching input data provided several
months after the enrollment data. We find that matching algo-
rithms trained to recognize coarse and fine-grained behavior
differences using distant enrollment/input separation provide
improved success for input data that is close and distant from
the enrollment data. We obtain highest success by providing
evidence from close and distant enrollment/input separations.

Overall, our results show that user behavior in VR exhibits low
variability over short and medium timescales. We find that secu-
rity mechanisms that use training data on large-scale changes in
user behaviors over long time periods can provide high success in
behavior-based VR security. We have made all code and data for our
work public at https://git.io/J9GIW.

2 RELATED WORK

2.1 Behavior-Based Authentication in VR
Early work in behavior-based techniques for VR authentication fo-
cused on using head motions for head-mounted wearables such as
Google Glass [20, 46, 57] and Google Cardboard [35], with head
movement patterns acquired using on-board inertial measurement
units in response to music [20], image presentations [46], and pre-
sentations of VR targets [35]. Eye blinks have also been used in con-
junction with head motion for authentication in Google Glass [46].
Since older head-mounted wearables such as Glass and Cardboard
lack involvement of user hands, they are less interactive in compar-
ison to recent VR systems that provide immersive experiences by
tracking hand behavior via controllers or vision systems.

The incorporation of hand controllers in VR systems enables
users to perform a wide range of interactions in VR such as picking,
pointing, swiping, throwing, and turning, and to integrate multiple
actions for higher level tasks such as driving, teleoperating, or play-
ing a sport in VR. With increased degrees of freedom offered by the
motions of the hand in comparison to the head, recent approaches to
VR authentication have explored integrating features from hand and
head trajectories to improve performance of VR authentication over
early work on using head motion alone. Pfeuffer et al. [43] perform
identification for activities such as pointing, grabbing, walking, and
typing using a set of hand-chosen features computed from the de-
vice trajectories. The features represent the movement patterns of
each VR device, pairs of devices, distances between devices, and
distances and angles to a target. They use feature selection to deter-
mine the best-performing features, and obtain a maximum accuracy
of 63.55% for the pointing action using random forests. Kupin et
al. [17] perform identification for 14 right-handed users throwing
a ball using an HTC Vive when using the motion of the dominant
hand controller alone as a biometric. They use the nearest neighbor
distance between trajectories to match input trajectories against an
enrollment set, and provide a maximum accuracy of 92.86%. Ajit
et al. [1] train a perceptron model to obtain the optimal weights
for aggregating input-to-enrollment distances between position and
orientation features from the headset and the hand controllers of
the HTC Vive. They evaluate 21 device-feature combinations and
demonstrate a maximum accuracy of 93.03% on a dataset of 33
right-handed users using the best performing features. Miller et
al. [33] augment the features for the perceptron in Ajit et al. to in-
clude velocity, angular velocity, and trigger grab/release. They show
results of identification performance within the same system and
across systems for a dataset of 41 users who provide data on the HTC
Vive, Oculus Quest, and HTC Vive Cosmos. In their cross-system
results, input data is provided on one VR system, and enrollment
on a separate VR system. They show accuracies of 91% for within-
system identification using the Quest and Cosmos, and 97% using
the Vive. Cross-system accuracies are lower between 58% and 85%.
The lower cross-system accuracies indicate that system-to-system
differences may influence user behavior when users switch systems.



Olade et al. [39] assess identification performance for grabbing,
rotation, and dropping activities on a dataset of 25 users using eye
location and position and orientation of the headset and hand con-
trollers as features. They evaluate a variety of classifiers such as
decision trees, discriminant analysis, support vector machines, lo-
gistic regression, k nearest neighbors, naive Bayes, and ensemble
classification, with and without principal component analysis for di-
mensionality reduction. They find that k nearest neighbors provides
the maximum accuracy of 98.6%. Miller et al. [31] demonstrate
identification results for a dataset of 511 users using the HTC Vive
to watch five 360◦ videos and answer multiple choice questions on
the videos. They evaluate k nearest neighbors, random forests, and
gradient boosting machines as classifiers, and provide a maximum
accuracy of 95% using random forests. The 511 users dataset of
Miller et al. [31] is the largest single VR system dataset. However,
the study incorporates limited full-body movement found in tradi-
tional VR experiences as users remain standing when watching the
videos and answering questions. More recent approaches to VR
authentication have moved toward using deep learning owing to the
success of neural networks at learning arbitrary decision boundaries.
Mathis et al. [27] evaluate a variety of network architectures and
device combinations to perform identification on a dataset of 23
users using an HTC Vive to enter a PIN number through digits on a
Rubik’s-like cube. They demonstrate highest and second-highest ac-
curacies of 98.91% and 98.55% using a fully convolutional network
and ResNet respectively. Liebers et al. [22] evaluate multi-layer
perceptrons and long short-term memory recurrent neural networks
(RNNs) for archery and bowling activities performed by 16 users
using the Oculus Quest. They demonstrate highest accuracy of
90% for RNNs on the archery activity when height normalization
is performed. Miller et al. [34] train Siamese neural networks that
facilitate higher cross-system success in comparison to their prior
work [33] by learning to characterize inter-system differences. They
obtain within-system identification accuracies of 99.75%, 99.51%,
and 98.04% for the Quest, Vive, and Cosmos, and cross-system
identification accuracies of between 87.82% to 98.53%, with an
average improvement of 29.78% over their prior work.

None of the prior work in VR biometrics so far provides a com-
prehensive analysis of temporal influence on behavior-based au-
thentication. Several approaches [27, 31, 39] analyze performance
using enrollment and input data that has been collected in succes-
sion where the difference in temporal spacing is within minutes, as
opposed to the longer timescales of days, weeks, or months that are
more likely to exist between enrollment and input data in a realistic
use case. Other approaches do evaluate authentication or identifi-
cation performance using data over separate days with the explicit
goal of assessing authentication over a longer timespan of days or
weeks [1,17,23,33,34,43]. Some approaches provide demonstrations
of real-time continuous authentication against enrollment collected
weeks or months in the past [28, 29, 32]. However, all prior work
lacks fine-grained breakdown of performance on short, medium, and
long timescales ranging over seconds to minutes, days, and weeks
to months. In this work, we bridge the lack of knowledge on the
impact of action timescales on continued security by contributing a
detailed study of performance on varying timescales.

2.2 Impact of Variability on VR Behavior Biometrics

While prior work in assessing impact of human behavior variability
on use of behavior biometrics in VR is lacking, similar work exists
for behavior-based authentication in other domains. Much of the
work remains focused in modeling and addressing visual changes
due to clothing and body carriage [4, 21, 30, 58] for gait-based user
recognition through video. Matovski et al. [30] demonstrate that
visual variabilities such as clothing and accessory differences play a
higher role in lowering recognition in comparison to short or medium

temporal separations between data provision. Visual variations in
clothing play no role in defining the user’s behavior in a VR envi-
ronment, and clothing is unlikely to affect interactions unless the
clothing significantly weights down the user. Visual variations can
affect the accuracy of VR systems that use vision-based tracking
algorithms, however, these effects have less to do with the user’s
behavior than with the degree to which vision-based tracking algo-
rithms are trained to be invariant to clothing change. While change in
carriage are likely to introduce variability, prior work on addressing
carriage change in gait-based recognition are unlikely to translate
to continuous authentication in VR. Most gait-based work focuses
largely on repetitive walking cycles and lacks a full coverage of the
dense array of interactions that users perform in VR environments.

Despite the importance of modeling temporal effects of behav-
ior variability on behavior biometrics use, work for desktop and
mobile environments is limited. Syed et al. [50] characterize user
habituation to a password entry task on a keyboard in terms of the
time it takes a user to enter the password. They demonstrate that
for complex credentials, users take a longer time in the first few
trials, with later trials demonstrating shorter entry times and reduced
variability over successive entries. They use variable sizes of train-
ing datasets to demonstrate that rate of reduction in equal error rate
(EER) for authentication using keystroke dynamics is affected not
solely by decreased training data, but also by the presence of habitu-
ation, i.e., that keystrokes too far in the past from the current entry
point may represent divergent behavior. Syed et al. [51] confirm the
findings of habituation in delay and hold time of Syed et al. [50]
by analyzing successive windows of keystroke entry patterns and
observing fewer variations in key combinations used in later entries.
The work of Palaskar et al. [41] and Syed et al. [52] demonstrates
similar findings for gesture-based authentication in touch devices
such as smartphones, where authentication EER increases signifi-
cantly when training and testing samples are distanced by more than
600 strokes. They show that retraining classifiers using data closer
in time to the test samples reduces EER. Unlike desktop or smart-
phone environments, the high cross-session security performance
demonstrated in VR environments [1,17,23,33,34,43] indicates that
VR applications structured to leverage user interactions similar to
those in the real world may require lesser habituation time.

3 DATASET ANALYSIS

We use the 41-subject dataset of Miller et al. [33, 34] and the 33-
subject dataset of Ajit et al. [1] to analyze the temporal effect in VR
biometrics. The datasets were collected upon Institutional Review
Board (IRB) approval from faculty, staff, and students at a small
rural university with approximately 3,500 students. Subjects ranged
in age from 18 to 38 years old with varying degrees of experience in
VR. Subjects were not provided any financial compensation for pro-
viding data for either study. The Miller et al. dataset [33,34] consists
of users providing data using multiple VR systems—an HTC Vive,
HTC Vive Cosmos, and Oculus Quest—enabling analysis within and
across VR systems. The Ajit et al. [1] dataset consists of users pro-
viding data using a single VR system, i.e., the HTC Vive. The task
in both datasets is identical and consists of a user throwing a ball at
a virtual target 10 times on two separate sessions per system. During
each session and throw, the physical characteristics and locations
of the ball, the target, and the pedestal holding the ball remained
constant. Each user session is separated by a minimum of 24 hours.
As shown in Table 1, the difference between sessions varies between
1 and 25 days. Of the 41 subjects in the Miller et al. [33, 34] dataset,
16 subjects provided data in the Ajit et al. [1] dataset using the HTC
Vive. For the purpose of this paper we consider the 16 subjects as
having prior experience in the VR application. For the 16 subjects,
on average 344.56 ± 166.30 days separate their first session in the
Ajit et al. [1] study and the first session in the Miller et al. [33, 34]
study with a maximum of 561 days and a minimum of 214 days. Of



Metric VA1/VA2 [1] Q1/Q2 [33, 34] Q2/V1 [33, 34] V1/V2 [33, 34] V2/C1 [33, 34] C1/C2 [33, 34]

Mean 4.03 ± 2.38 1.17 ± 0.80 2.27 ± 2.36 3.00 ± 2.07 8.15 ± 8.61 2.05 ± 1.60
Maximum 8.00 6.00 8.00 7.00 25.00 6.00
Minimum 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: Temporal difference between sessions for the 33 subject Ajit et al. [1] dataset and the 41 subject Miller et al. [33, 34] dataset. In the
header, V = HTC Vive, Q = Oculus Quest, C = HTC Vive Cosmos, A = data from Ajit et al., 1 and 2 designate the capture session.

the 16 common users across the Ajit et al. and Miller et al. dataset,
6 users provided data in April 2018 and 10 provided data in March
2019 for the Ajit et al. dataset. All 16 subjects provided data in
October 2019 for the Miller et al. dataset. As a result, for 6 of the
16 users the average difference between the first Miller et al. and
first Ajit et al. session is 552.33 ± 5.39 days and 219.90 ± 5.69 for
the remaining 10 subjects.

4 EXPERIMENTS AND RESULTS

We use the Siamese network architecture from Miller et al. [34]
to conduct our studies on assessing temporal effects over short,
medium, and long timescales on identification and authentication.
Data from the input session is fed on one limb of the network,
and data from the enrollment library is provided at the other limb.
The data consists of the position and orientation features of the
time trajectories from the three devices, i.e., the headset and hand
controllers. The network is trained to compare the data from the
two limbs and output a match score, with a high score indicating
that the corresponding users are identical. Prior to feeding to the
network, we normalize the trajectory positions to be mean-centered
and scale normalized, thereby reducing the contribution of static
physical parameters such as height from the ground, and enabling the
study of dynamic behavior changes related to action performance.

We use the following network hyperparameters for all studies.
• We use a batch size of 128 to speed up training as opposed to

Miller et al. who use a batch size of 64.
• We perform training optimization using a cyclic learning rate.

Cyclic rates, where the learning rate varies between a minimum
and maximum bound, have been shown to improve classification
in standard image recognition tasks [48].

Since we use a single set of hyperparameters and do not perform
hyperparameter tuning, we do not employ a validation set during
training. Miller et al. demonstrate that using position and orien-
tation features from all devices, i.e., the headset and the two hand
controllers, generally provides highest accuracies and lowest EERs.
We use the same set of features in our approach.

We provide results for within and cross-system identification and
authentication for the short and medium timescale analyses using the
dataset of Miller et al., and for the long timescales study using the
16 users in common with Miller et al. and Ajit et al. For the Miller
et al. dataset, we evaluate same-system pairings where enrollment
and input data come from the 2 sessions of a single system. We
label the same-system pairings as Q1/Q2 for the first and second
sessions of the Quest, V1/V2 for the first and second sessions of the
Vive, and C1/C2 for the first and second sessions of the Cosmos.
We evaluate cross-system pairings where enrollment comes from
an earlier system and input from a later system. According to the
dataset, Quest data was provided earlier for each user, followed by
Vive, and Cosmos data was provided last. This results in cross-
system pairings of Q1/V1, Q2/V2, Q2/V1, and Q2/V2 for Quest and
Vive, V1/C1, V2/C2, V2/C1, and V2/C2 for Vive and Cosmos, and
Q1/C1, Q2/C2, Q2/C1, and Q2/C2 for Quest and Cosmos.

We employ a leave-one-user-out approach for analyzing network
performance. For each left out user, we build training pairs by
linking throws from the enrollment system and session with throws
from the input system and session across all training users. For
the Siamese network, enrollment/input pairs that come from the

same user are given a 0 distance label, while those that come from
different users are given a label of 1 to represent a high distance.
During testing, we use each trained Siamese network to produce
distances from the test user’s input throw to the enrollment throws
of all users, i.e., training and test users. Using all users enables us to
determine performance by matching against a comprehensive library
of user data. We evaluate identification accuracy by determining
if the smallest distance belongs to the correct user. We evaluate
the authentication EER by obtaining false accept rates (FARs) and
false reject rates (FRRs) upon varying the threshold against which
the match distance is compared for accepting the user as genuine.
We obtain EER as the FRR where FRR and FAR are identical. We
average accuracies and EERs over all users involved in each analysis.

4.1 Analysis of Behavior over Short Timescales
We study the impact of temporal location of an enrollment throw on
identification over a short timescale, by considering system pairings
where users provide input data no more than one day after the
enrollment data, i.e., no more than up to 24 hours. We perform our
analysis on same-system pairings, i.e., Q1/Q2, V1/V2, and C1/C2.
38, 18, and 24 users provide enrollment and input data within a day
for Quest, Vive, and Cosmos. We perform leave-one-user-out train
and test within each subset of 38, 18, and 24 users. Given the small
sample size, we use the non-parametric Friedman’s test to determine
if there is a significant difference in the temporal location of the
enrollment match for each user’s input throw. We obtain p-values of
0.3213, 0.5947, and 0.1106 for Quest, Vive, and Cosmos indicating
no statistically significant effect of temporal location of enrollment
throw for each input throw, indicating that user behavior variabilities
over short timescales have limited influence on identification or
authentication success. Since the Friedman’s test did not indicate
any significance, i.e. our p-values were not significant, we do not
conduct any post-hoc tests for pairwise differences.

4.2 Analysis of Behavior over Medium Timescales
As part of our study of behavior over medium timescales, we analyze
how identification and authentication is influenced by temporal dif-
ference on the order of days to weeks between enrollment and input
data. Per user, we analyze the time difference between enrollment
and input sessions for the system pairings under consideration, and
we identify two clusters of users, one of whose time differences fall
at or below a threshold t, and one above the threshold. We select
t to be the value that enabled clusters across all system pairings to
be balanced, i.e., where the maximum difference between cluster
counts across all system pairings was no more than 20% of the total
number of users. We find t to be 10 days for cross-system input and
enrollment pairs. For within-system pairs, we analyze performance
for the Vive for which we identify t to be 3 days. We do not report
same-system results for the Quest and Cosmos, as we find that most
users provide data within 2 days for these systems, and there is no
threshold that ensures the cluster counts are balanced. Similarly,
we find that the separation between the Quest and Vive sessions is
small for most users, leading to no adequate threshold with balanced
cluster counts, and therefore Quest/Vive pairings are excluded from
the medium-scale analysis. We perform leave-one-user-out training
within each cluster by leaving the input and enrollment data for each
user and using input and enrollment pairs from remaining users in



Cluster E/I Q1/C1 Q1/C2 Q2/C1 Q2/C2 V1/C1 V1/C1 V2/C1 V2/C2 V1/V2

E/I Separation ≤ t #Users 21 16 21 16 25 19 25 25 22
Accuracies 96.19 89.38 96.67 80.62 98.80 90.53 98.40 94.80 100.00

EERs 0.95 2.79 0.57 3.21 0.38 3.86 1.12 1.64 0.05

E/I Separation > t #Users 20 25 20 25 16 22 16 16 19
Accuracies 97.00 100.00 93.50 99.20 91.25 98.18 98.75 99.38 100.00

EERs 0.97 0.33 1.45 0.14 1.85 0.51 0.98 0.60 0.23
Table 2: Accuracies and EERs as percentages for various system pairs for identification and authentication in clusters of users with enrollment/input
(E/I) separation of at or below t days and more than t days. The value of t is 3 days for V1/V2 and 10 days for the remaining pairings.
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Figure 2: Boxplot of accuracies for cross-system within cluster training. Outliers influence the average accuracies listed in Table 2. We observe a
median accuracy of 100% for clusters spaced less than t days and greater than t days, where t=10.

the cluster for training. We report test results by using the trained
network to obtain distances between the left-out user’s input throws
and enrollment throws of all users in the left-out user’s cluster, and
computing success metrics. The analyses enable assessment of how
authentication with higher enrollment/input temporal separation per-
forms against authentication with lower temporal separation.

Table 2 provides average accuracies and EERs for all system
pairings analyzed in this work for both clusters. We find that in
most cases, average accuracies are high. We observe that for the
lower-separation cluster, identification accuracy is higher and EER
is lower than for the higher-separation cluster in the case of pairings
Q2/C1 and V1/C1. For all other pairings, average success for the
lower-separation cluster is lower, which appears anomalous con-
sidering that one may expect shorter timescales to introduce lesser
behavior modification. However, the average scores are misleading
as they are skewed by a few outlier users for whom the network
malperforms. Figure 2 shows box-plots of per-user accuracies for
each enrollment/input system pairing across the two clusters. As
shown by the figure, the median accuracy is 100.00% for lower- and
higher-separation pairings. While a spread is observed for Q1/C2,
Q2/C2, and V1/C2, the lower quartile value is no lower than around
80%. The anomalous behavior observed in average performance is
due to a few outlier users for whom the network malperforms for
most system pairings.

One confounding factor for the higher-separation cluster is related
to prior experience with the VR ball-throwing task. As discussed
in the analysis of behavior over long timescales in Subsection 4.3,
16 users in the Miller et al. dataset provided data as part of the
Ajit et al. study. 14 of these 16 users have enrollment/input tem-
poral separations across system pairings that induce the users to
be largely assigned to the higher-separation cluster. We find that
the 14 users demonstrate an average accuracy of 96.88% over all
cross-system pairings analyzed in Table 2. The remaining 2 of the
16 users assigned to the lower-separation cluster demonstrate an
average accuracy of 97.50%. The average overall accuracy for the
remaining 23 users in the lower-separation cluster is 95.22%. We
use a Wilcoxon Signed Rank test to determine if the accuracy for
users with prior knowledge were significantly different from those
without. Our statistical test shows the differences are not significant
with a p-value of 0.2716.

4.3 Analysis of Behavior over Long Timescales

We determine the extent to which temporal spacing on the order
of months affects authentication performance by analyzing the 16
users in common between the datasets of Miller et al. and Ajit et al.
For each user, there exist two Vive sessions in both datasets. The
average temporal difference between the two sessions of Ajit et al.,
referred to as VA1 and VA2, is is 4.13 ± 2.80 days and and 2.38
± 2.19 days between the Vive sessions of Miller et al., referred to
as V1 and V2. The average difference between the first session of
Ajit et al., i.e., VA1, and the first session of Miller et al., i.e., V1 is
344.56 ± 166.30 days.

Fine- and Coarse-grained Behavior Changes. Figure 3
shows device trajectories users 5, 3, 1, and 16 from the Miller
et al. dataset who also provided data for Ajit et al. As the figure
demonstrates, some users exhibit coarse change in behavior between
the Ajit et al. and Miller et al. captures, while other users exhibit
fine change. Users also exhibit varying degrees of change per device.
Users 5 and 3 show fine-grained differences in the right controller
trajectories across the two captures. User 5 shows a moderate differ-
ence in the left controller and headset motions. The headset motion
of user 3 shows a somewhat moderate change as well, whereas their
left controller demonstrates a high variation. With user 1, stark
changes are observed for the left controller and a moderate change
as a wider arc in the right controller trajectory. For user 16, we see
variation in the throwing style with the right hand controller between
Ajit et al. and Miller et al. Our study demonstrates that coarse and
gradual variations impact the ability of matching networks to learn
overall behavior patterns within and across users.

To assess the impact of temporal distance on identification and
authentication, we use the leave-one-user-out approach to train Net-
works 1 through 4 using training data with varying levels of enroll-
ment/input separation. With each network, we perform a variety
of tests with summary results shown in Table 3. We conduct sig-
nificance testing to evaluate the tests with respect to appropriate
counterparts. Since our sample size is 16 subjects, we use the non-
parametric Friedman’s test to determine if the difference in accuracy
for the networks is significant. We obtain a p-value < 2.2×10−16

indicating at least one set of network pairs are significantly different.
Since the Friedman’s test does not indicate which pairs are different,
we conduct a post-hoc analysis using the Conover Test with Bonfer-
roni correction for multiple comparisons. To measure effect size for
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Figure 3: Controller and headset trajectories for VA1, VA2, V1, and V2 sessions for Users 5, 3, 1, and 16 from Ajit et al. and Miller et al. dataset.

statistically significant differences we use Cliff’s Delta.

Network 1. We train Network 1 using VA1 as enrollment and
VA2 as input for the training users. Network 1 is trained to recognize
differences between users who provided enrollment and input data
over a short period of temporal separation of on average 4.13±2.80
days. We conduct four tests to assess the effectiveness of Network 1
in successfully identifying and authenticating input data from the
left out user by comparing the data to enrollment data from all 16
users in common with Ajit et al. and Miller et al.
• Test 1.1 compares input data from VA2 against enrollment data

from VA1, and assesses the accuracy of Network 1 at classifying
data given at the same time period. Table 3 shows that as expected,
we receive an identification accuracy of 98.75% with a single mis-
classified input trajectory for 2 users and minimum authentication
EER of 1.12%.

• Test 1.2 and Test 1.3 compare input data from V1 and V2 respec-
tively against enrollment data from VA1. V1 and V2 are separated
by 7 to 18 months from VA1. As shown in Table 3, our identifi-
cation accuracy and authentication EER rate show a high drop in
performance since V1 and V2 were given by users much later in
time. Most users exhibit divergence in behavior that cannot be
captured by a network trained on users who provide input data
close to the enrollment data.

• Test 1.4 compares input data from V2 against enrollment data
from V1. While the data from V1 and V2 comes from a different
time period than VA1 and VA2, the separation between V1 and V2
at 2.38±2.19 days is comparable to that between VA1 and VA2.
While the accuracy 78.75% is higher than for trajectories that are
separated further out, the accuracy is considerably lower than for
data provided as part of the Ajit et al. dataset, and similarly EER
is considerably higher. As shown by the confusion matrix for
Test 1.4 in Figure 4, the most misclassifications are observed for
users 12, 16, and 36. While the behavior over short timescales
for all these users is consistent suggesting that accuracy should
be high similar to Test 1.1, Test 1.4 uses enrollment data for
multiple users with altered behavior patterns. The weights of
Network 1 are tuned to the behavior patterns of the users from
VA1. When altered behavior is provided on the enrollment limb
of Network 1, features generated by applying the network weights
may be incapable of representing the altered behavior, introducing
a drop in identification accuracy. It should be noted that while for
some users, e.g., users 5, 11, and 12 intra-capture separation is on
the order of 7 months, while for other users, e.g., users 1, 3, and 16
intra-capture separation is nearly 18 months, large differences in
inter-user capture separation do not appear to contribute to change
in identification or authentication success.

We observe that networks trained solely with short temporal sep-
aration in behavior data are susceptible to being overly tuned to
fine-scale differences between users, leading to low success when
applied to assessment of identification or authentication when be-
havior data is separated by long timescales as shown by Test 1.2 and
Test 1.3. They are also susceptible to being finely tuned to systematic

high-level similarities in user behavior over short timescales. When
multiple users exhibit non-systematic behavior change with novel
enrollment data provided for all users as used in Test 1.4, identifica-
tion and authentication for input behavior data provided over short
timescales with respect to that enrollment data is hampered. Our
post-hoc test reveals that the differences between Test 1.1 and all
other tests for Network 1 are significant with p-value < 2×10−16,
< 2× 10−16, and 1.2× 10−5 and effect size 0.859375, 0.859375,
and 0.6328125 for Test 1.2, Test 1.3, and Test 1.4 respectively.

Network 2. We train Network 2 as a baseline network to evalu-
ate accuracy of comparing input data from V2 against enrollment
data from V1 using Test 2.1 when the same pairs V1/V2 are used
for training. Network 2 provides a high accuracy of 100.00% and
low EER of 0.06%. As expected, the difference between Test 1.1
and Test 2.1 is not significant.

Network 3. We train Network 3 using enrollment data from
VA1 and input data from V1. Network 3 is trained to recognize
similarities between users when input and enrollment data is sepa-
rated by longer periods, i.e., between 7 to 18 months. Within this
period, some users’ devices exhibit coarse motion changes, while
others exhibit fine-grained changes, enabling the network to acquire
enrollment/input pairs for learning coarse and fine differences. We
conduct three tests by using Network 3.
• Test 3.1 uses Network 3 to compare input data from V1 to enroll-

ment data from VA1. The accuracy is low at 84.38% with EER of
9.48%. However, the accuracy is higher than when closely spaced
data is used in training Network 1 to obtain results for Test 1.2
that also compares V1 input to VA1 enrollment. We observe a
reduced identification and authentication success for user 16, who
confounds with user 12. The V1 right-hand throw trajectories for
user 16 shown in Figure 3 resemble the underhand throw of user
12 shown in Figure 1. When comparing Test 3.1 to Test 1.2 in Net-
work 3 the difference is significant with a p-value of 1.9×10−9

and effect size 0.6601562.
• Test 3.2 compares input data from V2 to enrollment data from

VA1. The separation between V2 and VA1 is similar to that
between V1 and VA1, i.e., around 7 to 18 months. Similar to
Test 3.1, inclusion of long temporal separation improves accuracy
over Test 1.3 that also compares V2 input against VA1 enrollment,
however, at 77.50% with EER of 13.02% the improvement is
lesser than with Test 3.1. With Test 3.1, we observe reduced
success for users 12 and 1 in addition to user 16, unlike in Test 3.1
where the identification and authentication for users 12 and 1
shows high success with the cyclic rate. While for users 12 and 1,
V1 and V2 trajectories are more consistent than their V1 and VA1
trajectories, slight variations are observable in the shape of the
right controller trajectory in V2 which may induce the behavior to
match closer with an incorrect user who shows similar behavior.
In the case of user 1, confounding largely happens with user 15,
both of whom have similar overall right controller trajectory shape
and head motion. The difference between Test 3.2 and Test 1.3 is
significant with a p-value of 1.6×10−6 and effect size 0.5859375.



Network Network 1 Network 2 Network 3 Network 4
E/I VA1/VA2 V1/V2 VA1/V1 VA1/VA2, VA1/V1 VA2/V1

Test Test 1.1 Test 1.2 Test 1.3 Test 1.4 Test 2.1 Test 3.1 Test 3.2 Test 3.3 Test 4.1 Test 4.2 Test 4.3
(E/I) (VA1/VA2) (VA1/V1) (VA1/V2) (V1/V2) (V1/V2) (VA1/V1) (VA1/V2) (V1/V2) (VA1/V1) (VA1/V2) (V1/V2)

Acc. 98.75 31.25 32.50 78.75 100.00 84.38 77.50 97.50 90.62 90.62 100.00
EER 1.12 29.25 30.10 17.60 0.06 9.48 13.02 1.31 2.85 2.38 0.29

Table 3: Accuracy (Acc.) and EER as percentages for biometrics using behavior separated over long timescales with the 16 subjects common to
the data sets of Ajit et al. [1] and Miller et al. [33,34]. VA* = HTC Vive data from the Ajit et al. [1] collection. V* = HTC Vive data from the Miller et
al. [33,34] collection, ‘1’ and ‘2’ refer to the session number within each collection, with session 2 occurring later in time than session 1. Temporal
separations are 4.13±2.80 days for VA1/VA2, 2.38±2.19 for V1/V2, 344.56±166.30 for VA1/V1, and 346.94±165.52 for VA1/V2. The separation
range for V1 and V2 from VA1 is 7 to 18 months.

As expected, the difference between Test 3.1 and Test 3.2 is not
significant as the temporal difference between the V1 and V2
sessions are small and our short and medium timescale studies did
not reveal any significant finding.

• Test 3.3 compares input data from V2 to enrollment data from V1.
Test 3.3 assesses the effectiveness of Network 3, trained using
data with long temporal separation, in matching data provided
with shorter temporal separation of an average of 2.38±2.19 days
from the enrollment. We find that the results are improved over
the similar Test 1.4, with accuracy of 97.50% and EER of 1.31%.
When comparing Test 1.4 and Test 3.3, we find a significant
difference with p-value of 5.0×10−6 and effect size 0.5859375.

Tests for Network 3 show that by presenting examples of coarse
and fine variations, accuracy is improved for behavior data provided
over short timescales and for behavior data provided over longer
timescales when the pairs are representative of the overall pattern of
behavior change between users over long timescales.

Network 4. To boost the quantity of training data for the net-
work to learn separability, we train Network 4 by providing pairs
from VA1/VA2, VA1/V1, and VA2/V1. The pairs represent behavior
variations over short and long timescales. We repeat the tests Test 3.1
to Test 3.3 for Network 3 as Test 4.1 to Test 4.3.
• Test 4.1 uses Network 4 to compare input data from V1 to enroll-

ment data from VA1. Test 4.1 demonstrates higher accuracy of
90.62% than Test 3.1 and lower EER of 2.85%. Users 12 and
16 are the only ones with high misclassification. While higher
accuracy than Test 3.2 seems surprising, Network 4 is boosted
with more examples of long-range behavior variation through the
provision of pairs from VA2 and V1.

• Test 4.2 compares input data from V2 to enrollment data from
VA1. Test 4.2 demonstrates similar patterns as Test 4.1, with a
higher maximum accuracy of 90.62% with EER of 2.38%. User
16 is the only user with high misclassification.

• Test 4.3 compares input data from V2 to enrollment data from V1.
Test 4.3 demonstrates a 100% accuracy and EER of 0.29%.
Overall, we see higher accuracies for behavior data separated by

long and short timescales by augmenting the network with trajectory
set VA2 that show short separation from VA1 and long separation
from V1, i.e., that include coarse and fine motion differences be-
tween enrollment/input pairs. When comparing Test 4.1 to Test 3.1,
Test 4.2 to Test 3.2, and Test 4.3 to Test 3.3, we find no significant
difference. However, given that the sample size is small, in general,
we recommend augmenting the long timescale training samples with
some examples of enrollment/input pairs that are closer in time.

5 DISCUSSION

In this paper, we perform the first investigation of temporal changes
in VR behavior over short, medium, and long timescales, and their
impact on the success of mechanisms that use VR behavior as a
biometric for identification and authentication. Our findings suggest
that short timescales have minimal impact in altering VR behavior

for common repeatable tasks such as ball-throwing, where users may
tap into prior real-world experience to rapidly acquire task famil-
iarity. Over medium timescales, the data suggests minimal impact
as well. Studies of two datasets collected over a time period sepa-
rated by 7 to 18 months demonstrate that over long timescales, users
demonstrate varying levels of behavior evolution, with differing
changes observed on a per-device level. Behavior evolution in long
timescales appear to negatively impact the success of security mech-
anisms that are trained to recognize behavior differences over short
timescales in protecting using input separated from enrollment data
by longer timescales. While security may be increased by adjusting
the threshold to reduce the FAR, the higher EER demonstrates that
FAR reduction will come at the risk of increased FRR, reducing us-
ability. Instead, we find that using data with longer time separations
may capture multiple granularities of behavior evolution, enabling
security mechanisms trained with longer separations of months to
years to work on enrollment data distanced by intermediate levels of
separation, such as days to weeks. The reduced EER obtained on
capturing behavior over multiple timescales indicates that usability
may also be improved.

Given the importance of the temporal factor in shaping user be-
havior in VR environments as elucidated by our work, it is critical
to design behavior-based security mechanisms that are cognizant of
behavior evolution, especially over long timescales. Future work
should investigate types of tasks and portions of task performance
that positively or negatively impact identification and authentication
in the presence of behavior evolution, as well as impact on continu-
ous usage and security. The interplay of biomechanics of movement
in VR, cognitive understanding and retention of the VR environment,
and muscle memory for task completion is complex, and deserves
attention. Prior higher-level knowledge of the VR environment may
reduce variability over successive short timescales, however, more
work needs to be performed to clearly elucidate the role of prior
knowledge, both overall and task-related, and behavior adaptation
on multiple timescales. Additionally, the role of prior real-world
experience in influencing VR behavior and its contribution toward
security success must also be investigated. The task investigated
in this work is a simple ball-throwing action. Future work in VR
should explore complex actions where users may need to simultane-
ously perform physical and cognitive tasks, such as navigating an
unknown territory, where evolution of cognitive capabilities symbi-
otically influences the physical behavior such as, e.g., a user learning
that a specific pathway requires the least amount of physical effort
and employing the optimum movement in a future trial.

An important aspect to consider for behavior over short timescales
is the impact of transient events such as injuries. If a user suffers
an injury immediately after they provide enrollment data, behavior
alteration due to injury may negatively impact identification or au-
thentication, and may cause an intended user to be locked out of
the application. Future work should investigate the role played by
transient changes in impacting security, for instance, by isolating
body parts on which injury occurs, and investigating the contribution
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Figure 4: Confusion matrices for 16 users in common with Ajit et al. and Miller et al. tested using 8 of the 11 tests discussed in Table 3.

of that body part and its degrees of freedom toward authentication.
For instance, security mechanisms may use a voting scheme to elimi-
nate devices handled by injured body parts from contributing toward
identification or authentication. Another aspect to investigate is how
user behavior in VR is influenced over short timescales by events
that may occur in the real world, e.g., if a user is distracted from
their VR task by a phone call and returns to the task after attend-
ing the call. Future work should investigate how VR behavior is
influenced by the cognitive load in handling real-world transient
experiences with varying degrees of positive or negative impact on
the person at the moment of distraction. To track impact of real-
world events on cognitive load over short timescales, future work
may use techniques such as eye-tracking [42] to assess pupil dilation
or wearables for heart-rate monitoring [16]. Emotional events may
be simulated by having subjects watch positive or negative video,
and increased cognitive loads may be simulated by having subjects
perform puzzle-solving or form-filling.

Unlike keystroke or gesture-based behavioral biometrics where
data can be captured at scale using a web-based key logger or the
user’s personal device, the relative novelty of VR makes large-scale
collection challenging. Until VR devices become as ubiquitous
as smartphones and laptops, longitudinal data collection for VR
spanning days, months, and years will require users to visit a capture
site which can be infeasible as a large pool of subjects are less likely
to visit for multiple captures. The largest capture to date for VR
biometrics is the work of Miller et al. [31] with 511 subjects captured
in a technology museum and a university setting, however the data
is captured in a single session making analysis over medium and
long timescales impossible. The work of Miller et al. [33, 34] has 41
subjects providing data across multiple sessions spanning days and
weeks. However, once subjects are binned into VR experience, real-
world task experience, and temporal difference between session the
number of subjects in each bin is not sufficient to draw statistically
significant conclusions. The 16 common users across Ajit et al. [1]
and Miller et al. [33, 34] enable long-timescale analysis, however, a
larger sample size is needed for concrete conclusions on temporal
effects over long timescales. Existing VR biometrics datasets lack

longitudinal data on cognitive or physical changes induced by a
subject aging, growing in height, or gaining or losing weight. A
large-scale dataset encompassing physical and cognitive changes at
varying timescales will help comprehensive analysis of impact of
temporal changes in VR biometrics.

Recognizing the challenge of collecting longitudinal data at scale,
we advocate incentivizing research teams to work with local middle
schools, high schools, and colleges to perform data collection over 4-
10 year spans where within- and cross-subject physical and cognitive
changes may be studied in real-world and VR environments. Efforts
should include reaching average users by incorporating task-based
data collection deployed in consumer VR applications such as games
or puzzle solving that may be attempted by multiple users. Given
the potential of VR to facilitate physical therapy and engagement,
incentivization should also be provided to reach out to senior cit-
izen communities so as to provide applications that involve older
adults in VR interaction that is secure and requires minimal learning
time. Support is critical from the VR community for elucidating
ethical concerns, facilitating seamless yet informed collection from
average consumers, and providing mechanisms for secure storage
of data. Successful at-scale collection has the potential to transform
VR security, as it enables performing behavior-based authentication
by leveraging the benefits of VR in performing controlled mimick-
ing of the real world. Modern smartphones provide multiple front
facing cameras and higher-end processors which may be leveraged
to create Cardboard style VR systems that perform camera-based
hand tracking similar to the Oculus Quest and HTC Vive Cosmos.
Such systems may allow VR to become more accessible leading
to data collection at scale. Behavior biometrics in VR are likely to
remain the de facto approach of authentication until VR system man-
ufacturers embed fingerprint scanners in controllers or iris cameras
in headsets with high-assurance behavior-independent continuous
authentication. By providing high-success-rate behavioral biomet-
rics, VR applications have the future potential to bypass traditional
credentials and provide uninterrupted user experiences in secure VR
environments.
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