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Figure 1: We provide user identification and authentication using behavioral biometrics in virtual reality by augmenting orientation
and normalized position features, expressed within the local coordinate systems of the hand controllers and headset devices, with
inter-device displacement vectors. We demonstrate that using inter-device displacement vectors provides maximum success rate
more often than baseline methods.

ABSTRACT

Deep networks have demonstrated enormous potential for identi-
fication and authentication using behavioral biometrics in virtual
reality (VR). However, existing VR behavioral biometrics datasets
have small sample sizes which can make it challenging for deep
networks to automatically learn features that characterize real-world
user behavior and that may enable high success, e.g., high-level
spatial relationships between headset and hand controller devices
and underlying smoothness of trajectories despite noise. We provide
an approach to perform behavioral biometrics using deep networks
while incorporating spatial and smoothing constraints on input data
to represent real-world behavior. We represent the input data to
neural networks as a combination of scale- and translation-invariant
device-centric position and orientation features, and displacement
vectors representing spatial relationships between device pairs. We
assess identification and authentication by including spatial rela-
tionships and by performing Gaussian smoothing of the position
features. We evaluate our approach against baseline methods that
use the raw data directly and that perform a global normalization
of the data. By using displacement vectors, our work shows higher
success over baseline methods in 36 out of 42 cases of analysis done
by varying user sets and pairings of VR systems and sessions.
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1 INTRODUCTION

With the future potential for virtual reality (VR) in consumer do-
mains with critical data such as surgical training [30, 33], remote
teleoperation and driving [29,34,44,45,52], healthcare [7,10,12,32,
35, 46, 53], education [9, 26, 28, 51, 54, 55], retail [50, 57], and per-
sonal banking [8, 56], a large number of approaches have emerged
to investigate security provision in VR applications so as to avoid
compromise by malicious users. Some approaches incorporate tradi-
tional credentials in the VR environment, such as password entries
via screens displayed on 2D planes or unique 3D arrangements of
objects [14, 18–21, 48, 58]. Once traditional credentials are acquired
by a malicious user, the application is rendered insecure. Addition-
ally, applications that depend solely on traditional credentials are
difficult to embed into a continuous authentication approach with-
out compromising system usability, as every time a credential-entry
screen shows up, the user needs to stop their interaction. Stopping of
interactions can be detrimental during activities such as test-taking
or completion of physical therapy routines in VR, and hazardous in
cases such as VR teleoperation of drones or vehicles. Traditional
biometrics, such as iris, have been explored as a means of VR au-
thentication [4–6], however iris cameras are not available in current
consumer VR devices on the market. To overcome the limitations of
passwords in ensuring continuous security, a growing body of work
has emerged on using user behavior in VR as a biometric, where the
motion of hand controllers and headsets is tracked as users perform
VR interactions [1, 27, 31, 36–43, 47, 49]. Recent approaches use



deep neural networks [31,36,42] given their success at learning user
behavior from input data with minimal pre-processing.

Existing VR datasets are small, since unlike work in keystroke and
gesture-based biometrics, where data can be collected at scale using
web-based keyloggers or downloadable smartphone applications [11,
13], VR systems still remain within the hands of a few niche users.
Release of VR applications to collect data at large relies on the
availability of permissions from application hosting platforms to
acquire user information. So far all studies on VR biometrics have
involved lab collections using in-house devices, with most datasets
having 41 users or below, and only one having 511 users [39]. The
small sample size of current datasets compromises the ability of
deep neural networks to leverage raw data directly for learning real-
world information that may contribute to improved success, e.g.,
high-level spatial relationships or underlying smoothness. In this
work, we contribute two forms of input data pre-processing that
incorporate real-world constraints on user behavior into learning
algorithms for VR behavior-based identification and authentication
using deep networks.

• We model spatial relationships between pairs of devices com-
prising a VR system, i.e., between the two controllers, and
between each controller and the headset. Physical character-
istics of users, e.g., height, weight, dexterity, and body part
measurements, as well as approaches to task performance, e.g.,
arm hyperextension versus elbow bend for throwing, point-
ing, or resting, may induce user-specific spatial relationships
between the headset and hand controllers. To incorporate spa-
tial relationships while leveraging the strengths of normalized
data in training neural networks [25], we augment normalized
device-centric input trajectory positions from each device with
displacement vectors from device pairings.

• Real-world motions exhibited by users are smooth, with sud-
den sharp changes being rare and largely intentional, e.g., the
cusp induced in a golf swing trajectory due to a pause at the
top of the swing. Errors in tracking mechanisms employed by
current VR systems, using outward facing cameras or light-
houses, may cause recorded data to be non-smooth in regions
where the motion is too fast or the device moves out of the
view of the tracker. Corruption from tracking noise may cause
trajectories across trials or VR systems to appear different, and
may reduce identification and authentication success. To in-
corporate smooth motions, we filter input trajectory positions
using Gaussian kernels.

While the concept of using spatial relationships was explored in
the work of Pfeuffer et al. [49], their work uses random forests and
provides low recognition accuracies, with a maximum of 63.55%.
By including inter-device displacement vectors as neural network
inputs, our is the first to include explicit spatial relationships in
a deep learning approach to VR biometrics without requiring pre-
interaction phases [31]. We evaluate our approach of combining
device-centric trajectory representations with inter-device spatial
relationships against baseline models that directly operate on the raw
data as in Mathis et al. [36], that perform per-device normalization
as in Miller et al. [42], and that perform a global normalization of
the data without treating per-device data independently. Our work
demonstrates higher identification accuracy over baseline models in
36 out of 42 cases of testing using Siamese networks and N-class
networks over various system and session pairings from the 41-user
and 3-system dataset of Miller et al. [41,42]. We have made all code
and data for our work public at https://git.io/J9GIW.

2 RELATED WORK

A number of approaches address VR security by translating the
concept of passwords to work in virtual environments using 2D pat-
terns [20,48,58], unique arrangements of 3D virtual objects through
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Figure 2: Right hand controller trajectories for users 5 and 7 perform-
ing ball-throwing using an Oculus Quest, HTC Vive, and HTC Vive
Cosmos. The external lighthouse tracking of the HTC Vive provides
cleaner trajectories, unlike the Oculus Quest and HTC Vive Cosmos
which track using onboard cameras.

controller- or gaze-based selections [14, 18, 19], and sequences of
actions [21] as inspired by analyses in desktop graphical environ-
ments [2, 3]. While several methods evaluate resistance to shoulder
surfing [14, 18, 47], security is greatly diminished if the attacker
gains direct access to the password combination by other mech-
anisms. As alternate biometrics for VR, the work of Boutros et
al. [4–6] evaluates iris and periocular data by retraining pre-existing
deep networks, DeepIrisNet [16], MobileNetV3 [23], ResNet [22],
and DenseNet [24] using iris images in the OpenEDs dataset of
Garbin et al. [17]. Their work relies on the availability of iris-facing
cameras, which at the current juncture are lacking in off-the-shelf
VR headsets. Additionally, since all images were acquired using a
single camera [17], it is unclear how the work will translate across
future potential iris cameras in VR systems upon deployment.

Recognizing the limitations of traditional credentials for VR au-
thentication, a number of approaches have arisen to investigate
using the behavior of a user in VR as a biometric signature. These
approaches are summarized in Table 1. As shown in the table, ap-
proaches that use traditional learning techniques such as nearest
neighbors and random forests with hand-crafted features are largely
outperformed by methods that use deep learning. Miller et al. [39],
provide the largest dataset consisting of 511 subjects viewing 5 360-
degree videos and answering multiple choice questions using the
HTC Vive. However, users exhibit movement during the study. As
a result, the height of the user and distance from the VR content
become the most discriminating feature in the dataset, reducing pro-
tection when a malicious attacker of the same physical dimensions
and placement as the genuine user gains access.

Amongst approaches that use deep learning for VR behavior
biometrics, Mathis et al. [36] do not report performing any data pre-
processing apart from using sliding windows from the original data
to provide classification of behavior trajectories. Miller et al. [42]
perform a per-device normalization of the raw input data as per
current deep network training guidelines that recommend layer input
normalization for faster and more reliable convergence of network
weights [25]. Within each headset or hand controller, they perform a
zero mean and unit variance adjustment of the data, and subtract the
bounding box center to remove the effect of variable point densities
along the trajectory that influence the centroid. Their approach loses
spatial relationships among the headset and controller devices in the
VR system. With smaller sample sizes, e.g., 41 users as in our work,
we demonstrate that using the raw data alone as in Mathis et al. [36]
or using device-centric normalization alone as in Miller et al. [41]
provides lower success at identification and authentication in most
cases than using the spatial relationships encoded by our approach.
The approach of Liebers et al. [31] performs normalization of arm
length and height, and report highest results of 90% with height
normalization. However, their normalization method requires users
to engage in a pre-interaction phase where the user observes their
virtual hand, and the front-facing cameras on the headset are used
to compute arm length and height. Such a pre-interaction phase
may prove cumbersome for the user, limiting fluid usability. In
contrast, our approach does not require a preparatory phase, making
it seamless for users to use the environment.



Study Classifier Users Activities VR System Features Success

Mustafa et al. [43] SVMs 23 Listen to Music Cardboard Head movement patterns 7% (EER)

Kupin et al. [27] Nearest
Neighbor

14 Ball-throwing HTC Vive Position of right controller 92.86%

Ajit et al. [1] Perceptron 33 Ball-throwing HTC Vive Position & orientation for
both controllers and headset

93.03%

Miller et al. [41] Perceptron 41 Ball throwing HTC Vive, Oculus
Quest, HTC Vive
Cosmos

Position & orientation for
both controllers, trigger, ve-
locity, and angular velocity

91%-97%, 58%-
85%?

Pfeuffer et al. [49] Random
Forests

22 Point, grab,
walk, type

HTC Vive Position, orientation, linear
velocity, angular velocity for
both controllers and headset

63.55%

Miller et al. [39] Random
Forests

511 360-degree
videos

HTC Vive Position & orientation for
both controllers

95%

Olade et al. [47] Nearest
Neighbor

25 Grab, rotate,
drop

HTC Vive Position & orientation for
both controllers and headset
+ eye position

98.6%

Mathis et al. [36] FCNs 23 Point at 3D cube HTC Vive Position & orientation for
both controllers

98.91%

Liebers et al. [31] RNNs 16 Archery Oculus Quest Position & orientation for
both controllers

90%

Miller et al. [42] Siamese
networks

41 Ball throwing HTC Vive, Oculus
Quest, HTC Vive
Cosmos

Position & orientation for
both controllers

98.04%-99.75%,
87.82%-98.53%?

Table 1: Summary of related work in VR biometrics (SVMs = support vector machines, FCNs = fully convolutional networks, RNN = recurrent
neural networks). Enrollment and use-time data is provided on the HTC Vive. Unless stated, ‘Success’ refers to accuracy at identifying users from
VR behavior. ?Cross-system accuracy.

3 DATASET

Our experiments use the dataset of Miller et al. [41, 42] which
consists of 41-subjects performing a ball-throwing action using
three VR systems, namely the Oculus Quest, the HTC Vive, and the
HTC Vive Cosmos. Each subject is asked to pick up a virtual ball
and throw it at a target 10 times during two sessions. The sessions
are separated by a minimum of 24 hours. Subjects are not penalized
for missing the target and data is recorded for 3 seconds. Subjects
are recruited from the faculty, staff, and student body after clearance
from the university’s Institutional Review Board (IRB). Each subject
provides data for six sessions using the Oculus Quest, HTC Vive,
and HTC Vive Cosmos in that order. The average time difference
between sessions is 1.17± 0.80 days for the two Quest sessions, 2.27
± 2.36 days between the second Quest and first Vive session, 3.00
± 2.07 days for the two Vive sessions, 8.15 ± 8.61 days between
the second Vive and first Cosmos session, and 2.05 ± 1.60 for the
two Cosmos sessions.

We choose the Miller et al. dataset as it is the only known dataset
with within- and cross-system user data. In the cross-system set-
ting user trajectories for enrollment and input are captured using
distinct tracking mechanisms, namely external infrared (IR) emitting
lighthouses for the HTC Vive, 4 cameras on the Oculus Quest, and
6 cameras on the HTC Vive Cosmos. As shown in Figure 2, the
tracking technology creates subtle differences in the user trajectory
across different VR systems. The HTC Vive provides cleaner trajec-
tories with fewer perturbations as the IR emitting lighthouses are less
likely to lose tracking unless there is interference or improper setup.
The Oculus Quest and HTC Vive Cosmos cameras lose tracking
during fast movements or if the user’s arm moves away from the
camera’s field of view. The HTC Vive Cosmos trajectories demon-
strate perturbations attributable to imprecise tracking. Differences

in tracking technology adversely affect performance in cross-system
identification and authentication [41, 42] in contrast to comparisons
within the same system.

4 REAL-WORLD BEHAVIOR CONSTRAINTS

Our work evaluates the effect of modeling higher-level real-world
constraints in device trajectories on the success of identification and
authentication using matching networks such as those used in Miller
et al. [42], and using N-class networks such as those used by Mathis
et al. [36] and Liebers et al. [31]. In this section, we discuss our
approach to include real-world constraints of spatial relationships
and smoothing in the input data.

Spatial Relationships. We model inter-device spatial relation-
ships by including displacement vectors between the positions of
the headset and hand controllers as input features to neural networks.
Given the position features pr, pl , and ph for the right controller
r, left controller l, and headset h, we compute normalized position
features p′r, p′l , and p′h, using the approach used in Miller et al. [42]
by first centering the points in each device to have zero mean and
unit variance over all time instants t, i.e., as

p̄?[t] = (p?[t]−∑t p̄?[t])/(‖p?[t]−∑t p̄?[t]‖) , (1)

and re-aligning the points with respect to the center of the bounding
box around the zero-mean and unit-variance trajectory as

p′?[t] = p̄?[t]−0.5(maxt p̄?[t]+mint p̄?[t]) , (2)

to eliminate spatial imbalance in the center of the device’s coordinate
system due to high point accumulations in the start or end regions of
the trajectory. In Equations (1) and (2), ? may be either h, r, or l for
the headset, right controller, or left controller respectively. Our work
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p̂l

Figure 3: Calculation of displacement vectors. The curves in red, blue,
and green show the trajectories for the right controller, left controller,
and headset respectively. Colored points show positions at a particular
time instant along the trajectory. Black points show the bounding box
centers for each trajectory.

augments the normalized position features p′r, p′l , and p′h, and the
original orientation features qr, ql , and qh at each time instant with
displacement vectors between pairs of devices. We evaluate two
methods to obtain displacement vectors. In Method 1, we compute
the displacement vectors from the right controller to the headset
dhr, the left controller to the headset dhl , and from the left to the
right controller drl , as the difference between the positions of the
corresponding devices at each time instant t as

dhr[t] = ph[t]−pr[t], (3)
dhl [t] = ph[t]−pl [t], and (4)
drl [t] = pr[t]−pl [t]. (5)

In the above equations, the notation [t] for each quantity is used
to indicate the value of that quantity at time instant t. We do not
require the opposite vectors drh, dlh, and dlr, as these are negations
of the vectors dhr, dhl , and drl respectively. We evaluate various
combinations of displacement vectors obtained using Method 1 as
features, i.e., dhr, dhl , and drl alone, pairs of dhr and dhl , dhr and
drl , and dhl and drl , and the entire triplet of vectors.

Method 1 estimates displacement vectors with respect to a frame
that moves with the reference device. Since point-to-point displace-
ment vectors may encode noise due to inaccuracies in tracking, in
Method 2, we represent the displacement vector for one device in
terms of a fixed frame with respect to a second device acting as ref-
erence. We use the center of the bounding box around the trajectory
of the reference device as an anchor to estimate the displacement
vector for a different device. For each device, we have the choice
of one of the other two devices as reference. We avoid using the
right controller as reference, as tracking inaccuracies during fast
motion, exhibited by the dominant hand during ball-throwing, cause
it to be inaccurately tracked. As such, the positions pl and ph of
the left controller and headset are anchored with respect to each
other’s bounding box centers, i.e., p̂h and p̂l respectively, yielding
displacement vectors dlĥ and dhl̂ given as

dlĥ[t] = pl [t]− p̂h[t] and dhl̂ [t] = ph[t]− p̂l [t], (6)

where p̂h and p̂l are obtained as

p̂h = 0.5(maxt ph[t]+mint ph[t]) and (7)
p̂l = 0.5(maxt pl [t]+mint pl [t]) . (8)

For the right controller, we have the choice of anchoring it with
respect to p̂h or p̂l . We choose p̂h to model the joint hand-headset
motion as a user’s head and eye movements follow the dominant
hand movement during their action. This yields displacement vector

(a) Siamese neural network for matching
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Figure 4: Architectures for (a) Siamese network and (b) N-class
classification, with (c) backbone for both architectures. Cn, BN, ReLU:
Convolution with learned features of size n, batch normalization, and
application of rectified linear unit activation, GAP: global average
pooling, P: number of channels in input, and N: number of classes,
i.e., users.

drĥ for the right controller, whose value at time instant t can be
expressed as

drĥ[t] = pr[t]− p̂h[t]. (9)

To represent all relationships, we evaluate Method 2 using the entire
triplet drĥ, dlĥ, and dhl̂ . Figure 3 shows displacement vectors using
the two methods for trajectories of user 5 using the Vive.

We compare our proposed model against the ability of the original
raw data to describe spatial relationships through a baseline model,
i.e., Model A, where we use the raw data directly without pre-
processing. Model A may malperform due to overall inter-user
and intra-user offsets in position. We evaluate against baseline
Model B to assess removal of translational offsets while retaining
the spatial relationships represented by the raw data. We use two
versions of Model B—Model Bc where the raw data is centered
about the bounding box center of the entire data, rather than on a
per-device basis, and Model Bn where the raw data is normalized
to be zero-mean and unit variance as a whole. We also evaluate our
work against the the original model of Miller et al. [42] which uses
per-device normalized position features without inter-device spatial
relationships. We refer to the Miller et al. model as Model C. In all
cases, we use orientation features without normalization as they are
expressed using Euler angles.

Smoothness Constraints. We represent the inherent smooth-
ness of underlying real-world behavior by filtering the trajectory po-
sitions using a Gaussian filter g. At each time point t, the smoothed
position p?,s for the device ? is represented as

p?,s[t] = ∑
s
v=−s g[v]p?[t + v]. (10)

We perform device-centric normalization according to Equations (1)
and (2) after smoothing. We compare the effect of introducing
smoothing at a low scale of s = 1 time step and a higher scale of
s = 2 time steps against using original non-smooth trajectories.

5 NEURAL NETWORKS

5.1 Architectures
We evaluate two neural network architectures in this work.

1. The first architecture is a Siamese network similar to Miller et
al. [42] who show that Siamese networks provide high accuracy
for cross-system biometrics analyzed in our work. The network



takes position, orientation, and displacement vector features
from the runtime input trajectories on the first limb and from
enrollment trajectories in a library on the second limb, and
returns a match distance between each enrollment-input pair as
the output. We perform identification by returning the user for
the enrollment trajectory with lowest distance as the label for
the input trajectory, and demonstrate identification accuracies
as results. We perform authentication by comparing match
distances against a threshold, and obtaining the equal error rate
(EER) as the value of false accept rate (FAR) where the FAR
is identical to the false reject rate (FRR).

2. The second architecture is an N-class classification network
similar to Mathis et al. [36] and Liebers et al. [31] that takes in
position, orientation, and displacement vector features from a
user as input, and returns the identity (ID) of the user as output
for identification. We perform authentication by comparing
the network probability to varying thresholds, and obtaining
EER as the value of FAR where FAR and FRR are identical.

As shown in Figures 4(a) and 4(b), we adapt the Siamese network of
Miller et al. [42] and fully convolutional networks (FCNs) shown to
provide highest accuracy in Mathis et al. [36] to take in displacement
vectors as additional input. Both networks use the same backbone
as shown in Figure 4(c). We use an input of size 135×P consisting
of 135 time samples and P channels, where the channels consist of
3 coordinates X, Y, and Z for the position of each of the 3 devices
yielding 9 position features, 3 Euler angles for the orientation of
the 3 devices yielding 9 orientation features, and the coordinates
of the displacement vectors. Displacement vector features may be
3 for single vectors, i.e., dhr, dhl , and drl alone, 6 for pairs, i.e.,
dhr and dhl , dhr and drl , and dhl and drl , or 9 for triplets dhr, dhl
and drl (termed ‘All’), and drĥ, dlĥ and dhl̂ (termed ‘Bbc’). For
Figure 4(b), the identity of the user is returned as the one with the
highest probability over N user classes.

5.2 Training and Testing Method
We use the Miller et al. [41, 42] 41-user dataset to assess the within-
system and cross-system identification accuracy and authentication
EER of our approach against baselines without displacement vectors,
with and without smoothing. We perform an n-fold evaluation in
order to test our proposed contributions for varying sizes of test user
groups and enrollment libraries. We evaluate performance for small
test user groups via a 10-fold cross-validation, where 9 folds have 4
test users per fold and the 10th has 5 test users. To assess scalability
with increase in the number of test users, we evaluate performance
using a 5-fold cross-validation, where 4 folds have 8 test users per
fold, and the 5th has 9 test users. For each fold, we train a Siamese
network by using the input and enrollment pairs from users left out
of the fold as training. The users included in the fold form the test
users. During training, we use the Adam optimizer with a batch size
of 128, and a cyclic learning rate varying as a triangle wave between
10−6 to 10−3 and a cycle of 5 epochs.

For each cross-validation, we evaluate two versions of enrollment
library sizes, one where the enrollment data comes from the test users
only, termed ‘10TS’ and ‘5TS’ for ‘10-fold Test using Siamese’ and
‘5-fold Test using Siamese’ respectively. This scenario represents
the typical situation where a biometric algorithm trained to perform
matching using enrollment and input data from a training set of users
would be deployed within an organization. In the second version
of the results, we use a larger enrollment library consisting of the
enrollment data from the test and training users, i.e., all 41 users in
the dataset. We term this set of results ‘10AS’ and ‘5AS’ for ‘10-
fold All using Siamese’ and ‘5-fold All using Siamese’ respectively.
This set of experiments allows us to determine scalability to a larger
enrollment library. The input data still comes solely from the test
users to prevent contamination of input from the training set.

To assess performance of N-class networks over varying user
groups, we perform three analysis—one where a single network is
trained on the enrollment data of all users termed ‘AN’ for ‘All using
N-class’, and one where neural networks are trained per fold using
the enrollment data within a fold for 10-fold and 5-fold evaluation,
termed ‘10N’ and ‘5N’ for ‘10-fold using N-class’ and ‘5-fold using
N-class’ respectively. Similar to the Siamese networks, we use the
Adam optimizer with a batch size of 128 and a cyclic learning rate
varying between 10−6 to 10−3 as a triangle wave with cycle of 5
epochs. For ‘AN’, testing is performed using input from all users,
and for ‘10N’ and ‘5N’, testing is performed using input from users
within the fold.

6 RESULTS

We assess the highest accuracy and lowest EER across all three
smoothing levels from Tables 2 to 5 for 10-fold and overall analyses,
and Tables 1 to 3 in the supplementary for 5-fold analyses. In each
table, we report the rank-1 and rank-2 accuracies and EERs, together
with the corresponding best performing model for three smoothing
levels—‘S0’ for no smoothing, ‘S1’ for smoothing using 1 time step,
and ‘S2’ for smoothing using 2 time steps. For within-system identi-
fication and authentication, we assess system pairs where enrollment
and input data comes from the same system, i.e., Q1/Q2 for the
Quest, V1/V2 for the Vive, and C1/C2 for the Cosmos, where ‘1’
and ‘2’ refer to the first and second session respectively. The first
session is used for enrollment and the second session as input. For
cross-system assessment, we use data from the system used earlier
as enrollment and compare it against data from the system used as
input. With two Quest, two Vive, and two Cosmos sessions with
data provided in that order, we have 12 system pairings—Q1/V1,
Q1/V2, Q2/V1, and Q2/V2 for the Quest and Vive, Q1/C1, Q1/C2,
Q2/C1, and Q2/C2 for the Quest and Cosmos, and V1/C1, V1/C2,
V2/C1, and V2/C2 for the Vive and Cosmos. Since performance
across both sessions of the devices in a pair are similar, we report
average metrics Q/V, Q/C, and V/C over the 4 session combinations
in each device pairing, where Q/V provides averages over Q1/V1,
Q1/V2, Q2/V1, and Q2/V2, Q/C over Q1/C1, Q1/C2, Q2/C1, and
Q2/C2, and V/C over V1/C1, V1/C2, V2/C1, and V2/C2.

6.1 10-Fold Analysis for Siamese Networks
As shown in Table 2, we obtain the highest accuracy when using
‘10TS’. For the rank-1 accuracy, we observe that our approach yields
the highest accuracy across the 3 smoothing levels in 4 out of 6
system combinations. Our approach with hr and rl features achieves
the highest accuracy at 98.05% for Q1/Q2 and 98.83% for V1/V2.
For C1/C2, our approach provides the highest accuracy of 93.17%
using hr and hl as features. In cross-system combinations, Model Bn
achieves highest accuracy for V/C, while our approaches with hl fea-
tures achieves the highest accuracy for Q/V at 87.81%. Our approach
with all features provides the highest accuracy at 80.12% for Q/C.
The HTC Vive (V) achieves the highest accuracy in within-system
comparisons as it tracks user behavior with external lighthouses and
is less likely to stop tracking unlike camera-based systems, such as
the Oculus Quest (Q) and HTC Vive Cosmos (C). The Cosmos has
the lowest accuracy due to the sensitivity of the cameras to changes
in ambient lighting [15]. As shown in Figure 2, the Vive and Quest
generate fewer tracking errors than the Cosmos. In cross-system
combinations, the Quest/Vive (Q/V) pairing has the highest accuracy
due to the quality of the tracking mechanism as shown in Figure 2.
Cross-system matching does not perform as well as within-system
matching due to the limited data. With larger sample sizes it is
expected that the neural network will be able to more accurately
learn the systematic differences. In the 4 rank-1 cases where our
approach provides highest accuracy, displacement vectors hr, rl, and
hl contribute to the highest accuracy 3, 3, and 2 times respectively.

As shown in Table 3, in ‘10AS’ our approach has the highest



Q1/Q2 V1/V2 C1/C2 Q/V Q/C V/C

S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2

1-Acc. 97.32 98.05 96.83 96.59 96.83 96.83 93.17 94.15 93.17 87.81 87.31 87.01 78.72 80.12 78.11 83.29 82.26 82.38
1-EER 7.81 9.09 8.49 8.57 9.40 9.44 10.08 11.88 11.31 15.63 15.91 14.82 20.92 20.2 21.63 19.71 20.46 20.47
1-Model A Ours A Ours Ours C Ours Bn Ours Ours Ours Ours Ours Ours Bc Bn Ours Bn

hr,rl rl hr,rl hr,hl All hl All All hl All rl

2-Acc. 96.59 97.07 96.1 96.34 96.59 95.85 92.93 92.44 92.93 87.56 87.2 86.89 78.47 78.35 77.44 82.92 82.01 80.42
2-EER 9.48 8.97 10.20 9.56 9.00 9.57 11.47 11.71 11.43 15.79 16.45 15.13 21.33 21.48 22.89 19.45 20.42 20.19
2-Model Ours A Ours C Ours Ours Ours Ours A Ours Ours Ours Ours Ours Ours Ours Bn Ours

hr,rl hl,rl hl hr hr hl,rl hr,rl Bbc hl hl,rl hr,hl hr,rl hr,rl All
Table 2: Maximum and second maximum accuracies per system combination and smoothing level when using Siamese networks with 10-fold
analysis, and with input and enrollment from test users (‘10TS’). Smoothing levels used are ‘S0’ for no smoothing, ‘S1’ for smoothing with 1 time
step, and ‘S2’ for smoothing with 2 time steps. Q1/Q2, V1/V2, and C1/C2 are comparisons of Quest (Q), Vive (V), and Cosmos trajectories
between sessions 1 and 2. Q/V, Q/C, and V/C are averages of cross-system performance for Quest to Vive, Quest to Cosmos, and Vive to
Cosmos when enrollment data from the earlier system is compared against input data from the later system. 1-EER/1-Model and 2-EER/2-Model
represent the EER or model at the first and second maximum accuracies respectively. ‘Ours’ represents the maximum over approaches that
incorporate distance vectors. ‘All’ represents the triplet hr,hl,rl, and ‘Bbc’ stands for the triplet that uses distance vectors computed with respect to
bounding box centers, i.e., rĥ, lĥ,hl̂. We perform best for 11 combinations.

Q1/Q2 V1/V2 C1/C2 Q/V Q/C V/C

S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2

1-Acc. 96.34 97.32 94.63 94.63 95.12 94.63 90.49 91.22 92.93 85.18 83.66 85.00 73.78 76.03 72.56 76.77 76.70 76.10
1-EER 1.75 2.20 2.53 2.72 2.66 2.65 3.36 3.41 3.38 3.69 4.02 3.66 5.13 4.65 4.96 5.25 5.24 5.56
1-Model A Ours Ours C Ours Ours A A A Ours Ours Ours Ours Ours Ours Ours Ours Ours

hr,rl hr rl hr hl,rl Bbc All hl,rl All hr,rl hr,hl hr,rl All

2-Acc. 95.61 96.34 94.63 94.39 94.63 94.39 89.27 90.49 88.29 84.39 83.35 84.64 73.41 73.17 71.77 76.64 76.1 75.85
2-EER 2.31 2.18 2.43 2.61 2.64 2.45 2.96 2.72 3.49 3.74 3.61 3.38 5.76 5.43 5.18 5.25 5.64 5.39
2-Model Ours Ours Ours Ours Ours Ours Bn Bn Ours Ours Ours Ours Bc Ours Ours Ours Ours Ours

hr,rl All hl,rl rl hr hl hr hr,hl All hl hr,hl hl hr,rl rl hr,rl
Table 3: Maximum and second maximum accuracies per system combination and smoothing level when using Siamese networks with 10-fold
analysis, and with input from test users and enrollment from all users (‘10AS’). Similar conventions used as in Table 2. We perform best for 13
combinations.

accuracy at 97.32% using hr and rl features for Q1/Q2. Model A
has the highest accuracy at 92.93% for the C1/C2 combination. Our
approach with rl features gives the highest accuracy at 95.12% for
V1/V2. In cross-system combinations our approach outperforms
the baseline and provides highest accuracy at 85.18% with hl and
rl features for Q/V, 76.03% with all features for Q/C and 76.77%
with hr and hl for V/C. In the 5 instances where we achieve highest
rank-1 accuracy over the 3 smoothing level, hr, rl, and hl contribute
3, 4, and 3 times toward highest accuracies. In all cases we observe
that smoothing has limited effect on the accuracy.

6.2 5-Fold Analysis for Siamese Networks
As shown in Table 1 in the supplementary, our approach provides
highest accuracy in 5 out of 6 system pairings when assessed over all
smoothing levels. The displacement vectors hr, rl, and hl contribute
to improved accuracy in 4, 4, and 5 cases. With ‘5TS’ we observe
that for the Q1/Q2 combination, our approach using hr and hl as
features provides the highest accuracy of 93.17%. When analyzing
within-system performance, We achieve the highest accuracy of
93.90% with the V1/V2 combination using our approach and hl
and rl as features. For cross-system combinations, the Model Bn
provides the highest accuracy of 74.58% for the V/C combination.
Our approach with all features provides the highest accuracy of
78.41% for the Q/V pairing and 69.27% for the Q/C pairing.

For ‘5AS’, as shown in Table 2 in the supplementary, in the 5
out of 6 system pairings where using displacement vectors shows
highest accuracy, the features hr, rl, and hl contribute in 4, 2, and 5
cases. The higher contribution of hl for larger test user pools may

point to the advantage of including a feature that maps largely static
components, i.e., the head and left hand. As expected, the accuracy
for all system combinations is lower when compared to enrollment
and input data coming from test users only. Our approach with hr and
hl as features provides the highest accuracy of 92.20% for the Q1/Q2
combination. Our approach with all features provides the highest
accuracy of 93.17% for the V1/V2 combination. For the C1/C2
combination our approach provides the highest accuracy of 86.64%
using hl as the feature. For the Q/V combination, Model Bn gives
the highest accuracy of 73.96%, while for the remaining two cross-
system combinations our approach provides the highest accuracy of
62.07% for Q/C with hr and hl as features and 67.44% for V/C with
all features. Similar to ‘10TS’ and ‘10AS’, smoothing has minimal
impact on accuracy.

6.3 N-class Classification Analysis
In Table 4, we provide results for N-class classification using ‘AN’.
For the within- and cross-system combinations of Q1/Q2, V1/V2,
and C1/C2 our approach provides highest accuracy of 91.46% with
all features for Q1/Q2 and 91.71% and 85.65% with hr as features
for V1/V2 and C1/C2 respectively. For cross-system combinations,
our approach provides highest accuracy with 54.33% with hr and
hl as features for Q/C and 67.86% and 60.85% with all features
for Q/V and V/C respectively. Our approach provides the highest
accuracy in all pairing, with feature contributions appearing 6 times
for hr, 3 times for rl, and 4 times for hl.

As shown in Table 5, for ‘10N’ our approach provides the high-
est accuracy for all cross-system pairings. Our approach with all



Q1/Q2 V1/V2 C1/C2 Q/V Q/C V/C

S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2

1-Acc. 91.46 91.22 91.71 91.71 90.24 90.73 83.66 84.39 85.85 67.86 67.56 67.56 54.15 54.02 54.33 59.69 59.94 60.85
1-EER 2.90 2.60 2.70 2.40 2.90 3.50 5.30 5.50 4.70 11.00 10.45 9.68 13.82 14.35 13.57 15 15.45 14.25
1-Model Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Bn Bn Ours Ours Ours Ours

All hr,hl hl,rl hr hr,rl hr hr,hl All hr All hr,rl hl,rl hr,hl hr,rl hl,rl All

2-Acc. 90.73 90.98 91.46 91.46 89.76 88.29 83.17 83.66 84.88 67.13 67.20 67.44 53.84 53.54 54.27 59.63 59.33 60
2-EER 2.50 3.60 2.60 3.40 2.70 2.90 5.60 5.50 4.90 11.12 10.75 10.15 13.70 13.60 13.55 15.12 15.00 15.60
2-Model Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours

hr All All hr,hl rl hr,rl hr hr,rl hl,rl hl,rl All hl Bbc All All All hr,rl Bbc
Table 4: Maximum and second maximum accuracies per system combination and smoothing level when using N-class networks, with training
using enrollment from all users and testing with input from all users (‘AN’). Similar conventions used as in Table 2. We perform best for 16
combinations.

Q1/Q2 V1/V2 C1/C2 Q/V Q/C V/C

S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2 S0 S1 S2

1-Acc. 95.12 94.39 94.15 96.10 97.56 95.61 90.73 90.24 91.22 80.73 81.65 82.02 76.40 75.80 77.07 75.24 74.75 75.55
1-EER 2.80 3.90 3.50 2.40 1.30 2.50 5.80 6.80 5.80 12.78 11.95 12.05 15.05 15.55 13.93 16.35 16.30 15.58
1-Model Bn Ours Bn Ours Ours Ours Ours Ours Ours Ours Ours Ours Ours Bn Ours Ours Ours Ours

hr,rl hr,rl All hr,rl All rl hl All Bbc All All hl,rl hr,rl All hl,rl

2-Acc. 94.39 94.15 94.15 95.37 95.37 95.37 90.00 90.00 90.73 80.30 81.34 81.03 76.04 75.42 76.83 74.94 74.45 75.37
2-EER 3.80 3.30 3.60 2.60 3.10 2.90 7.20 5.60 5.50 12.40 11.80 11.82 14.95 15.47 14.60 16.55 16.18 15.85
2-Model Ours Bn Ours Ours Ours Ours C Ours Ours Ours Ours Ours Bn Ours Ours Ours Ours Ours

rl hr,hl hr hl All hl,rl hl,rl Bbc hr,hl Bbc hl,rl Bbc Bbc Bbc All
Table 5: Maximum and second maximum accuracies per system combination and smoothing level when using N-class networks, with training and
testing using enrollment and input from users restricted to each fold of a 10-fold split (‘10N’). Similar conventions used as in Table 2. We perform
best for 15 combinations and are tied for 1 combination.

features provides the highest accuracy of 82.02% for Q/V. For the
Q/C pairing our approach with hl and rl as features provides the
highest accuracy of 77.07%. For the V/C using hl and rl as features
we achieve the highest accuracy of 75.55%. Among within-system
pairings, Model Bn achieves the highest accuracy of 95.12% for
Q1/Q2, while our approach with all features achieves best accu-
racy of 97.56% for V1/V2 and 91.22% for C1/C2 with hl as fea-
ture. Table 3 in the supplementary provides results using ‘5N’. For
within-system combinations our approach yields highest accuracy.
In the Q1/Q2 combination we achieve accuracy of 94.39% with
hr and hl as features. For V1/V2 hr as features provides accuracy
of 94.63%. Our approach with all features gives an accuracy of
90.24% for C1/C2. For cross-system pairs, Model Bn shows high-
est accuracy 71.22% for the V/C pair while our approach provides
the highest accuracy of 79.94% with vectors computed using the
bounding box center as features for Q/V, and 72.44% for Q/C with
all non-bounding-box displacement vectors. For the 5 pairs where
we outperform prior models, feature vectors hr, rl, and hl contribute
in 2, 4, and 5 cases for ‘10N’ and in 4, 3, and 2 cases for ‘5N’.

6.4 Best Performing Models and Vectors
Overall, across 42 cases consisting of the 6 system pairings and 7
experiments (4 for Siamese and 3 for N-class), using displacement
vectors shows higher accuracy than baseline models in 36 cases,
indicating that displacement vectors have the potential to improve
performance of deep learning algorithms for VR biometrics. Over-
all, the displacement vectors hl, hr, and rl appear 26, 26, and 23
times respectively. The results suggest that the relationships of the
controllers to the headset play a higher role in improving perfor-
mance compared to the relationships between controllers. Using
the bounding box of the trajectories appears to have reduced impact
in comparison to using point-to-point displacements. The point-
to-point displacements also offer the advantage that they can be

computed in real time, unlike the trajectory’s bounding box center
which requires complete knowledge of the trajectory.

6.5 Impact of Smoothing
For all approaches smoothing has limited impact on improving
accuracy or lowering EER. While the dataset examined contains
non-smooth trajectories such as those generated using the Cosmos,
the lack of smoothness is systematic and occurs due to small per-
turbations. Where high accuracies are generated, the networks may
be capable of learning the nature of small systematic perturbations,
as a result of which smoothing may have limited effect. Where
low accuracies are generated, e.g., for matching between the Vive
and Cosmos, the low matches may likely be due to coarse overall
differences in trajectory appearance as shown in Figure 2, rather
than due to variation in smoothness across systems or users.

7 DISCUSSION

We demonstrate that using a combination of device-centric trajec-
tory specification and inter-device displacement vectors as features
improves the performance in authentication and identification us-
ing behavioral biometrics in VR over baseline approaches that use
raw trajectories or that perform global normalization without treat-
ing each device’s trajectory independently. The limited impact of
smoothing may be attributed to the VR systems used and the data
collection protocol. The HTC Vive uses external lighthouses to
track the hand controllers and the headset. Barring any changes
to set up, improper placement of the lighthouses, or external in-
terference sources it is expected that the lighthouses will track the
hand controllers and headset with limited variability across captures.
The lighthouses were permanently secured during the collection
of the dataset of Miller et al. [41, 42] for the duration of the study.
The Oculus Quest and HTC Vive Cosmos use external cameras to
perform tracking of the hand controllers and headset that are more



susceptible to changes in lighting and environment conditions. The
dataset provided by Miller et al. [41, 42] was collected in a single
research lab with no external windows and non-adjustable lighting,
thus the influence of ambient lighting across sessions is limited.
Large-scale datasets that vary physical capture space set up, lighting,
and environment conditions are needed to understand the true effect
of smoothing in improving the performance of VR biometrics.

For non-smooth trajectories in the dataset, the lack of smoothness
is largely systematic. Negative impact of non-smooth trajectories is
likely to occur if large infrequent perturbations occur, e.g., the mo-
tions involved in conducting the task are such that some users may
occasionally track outside the range of the tracking mechanisms, so
that the neural networks lack sufficient data to learn these anomalous
trajectory patterns. To handle these anomalies, in future work we
are interested in investigating intelligent smoothing approaches by
using a robotic arm programmed with a known motion pattern to
probe the limits of the tracked space, relating the known pattern
to the motion picked up by the tracker, and creating approaches
to automatically synthesize the ground truth motion from a novel
tracked motion. Additionally, this work only performs smoothing
on the position vectors, and does not study effect of tracking noise
on the orientation quaternions and the use of smoothing to eliminate
noise in the orientations. For an activity such as ball-throwing with
largely in-plane motion for the dominant hand and head, orientation
vectors may demonstrate limited noise in tracking, however, activi-
ties involving higher degrees of rotational freedom such as flying a
drone, driving, moving and handling objects, or writing and drawing
in VR may be more susceptible to noise in the orientation vectors.
As part of future work, we are interested in expanding the space of
activities to include tasks with high rotational freedom occurring at
various distances from the tracking mechanism.

While algorithmic pre-processing approaches may address some
challenges related to collection at scale and the need for large
datasets to train deep learning methods, we recognize that to cap-
ture the diversity of behavior patterns and actions in the real-world,
scaling up VR data collection is essential to create robust secu-
rity algorithms in future work. Work in behavior-based biometrics
for keystroke, mouse, and smartphones benefits from large-scale
datasets containing multiple devices due to the ubiquitous nature
of laptops and smartphones and the ease of capturing data through
web-based or downloadable applications. Currently, the largest VR
biometrics dataset is that of Miller et al. [39] with 511 subjects.
While the dataset has a large number of subjects, its ethological
validity remains a concern, since users exhibited limited movement
as the study focused on users watching a series of videos and answer-
ing questions. Investigation of behavioral biometrics using multiple
VR systems has been limited to a maximum of 3 systems by Miller
et al. [41, 42]. Data collection will be accelerated only when VR
systems are placed into the hands of large groups of consumers. This
in turn requires the development of VR devices that are affordable.
As more standalone VR systems, such as the Oculus Quest and
HTC Vive Focus, and low-cost options, such as the sub $300 128GB
Oculus Quest 2, enter the market, one may expect an uptick in the
number of consumers purchasing VR systems. While the Google
Cardboard attempted to make VR accessible to a broader group of
users, it lacked the ability to track full-range motions in VR. To en-
courage the average consumer to rapidly embrace VR applications,
it is necessary to develop VR systems that leverage modern smart-
phones that contain multiple front and rear facing cameras along
with depth sensors to perform inside out-tracking. The average con-
sumer is more likely to procure a low-cost system similar to Google
Cardboard that can be integrated with their existing smartphone and
provides capabilities similar to modern standalone VR systems.

It is also essential that VR applications everyday activities, e.g.,
banking, social networking, physical fitness, and office and educa-
tional productivity, are such that users automatically find VR to be

a more seamless environment for those activities in comparison to
traditional devices such as laptops, smartphones, and tablets. So
far, discussions of security versus usability in the VR space have
remained confined to application access [48]. However, to lay the
foundation for at-scale collection of user behavior, future research
must include exploration of usability from the standpoint of the
physical characteristics of the device such as weight and bulkiness,
the seamlessness of the interaction mechanisms, e.g., latency, com-
fort level of long-term handheld device usage, and miss rate of
hand tracking algorithms for hands-free interaction, and user pref-
erences on use and security for VR versus traditional devices for
everyday applications. While some studies do require human sub-
jects data collection, a multimodal approach may be leveraged, by
conducting questionnaires on user preferences, or analyzing small
focus groups for device usage comfort. Currently, most datasets for
behavior-based VR security focus on singular repetitive actions such
as throwing, swinging, picking, and pointing. While developing VR
applications and their security mechanisms, focus should be laid on
providing and analyzing multi-step activities, e.g., visiting a bank,
that involve multiple unit actions such as talking to a teller, filling
a deposit slip, and depositing a check, with varying choices and
permutations of actions in different instances of the activity.

If VR systems are to replace smartphones and laptops as the
de-facto instrument for work, education, entertainment, and critical
systems then a symbiotic relationship needs to develop between
research teams in VR biometrics, manufacturers of VR systems, and
creators of VR applications to enable collection of behavior-based
data in realistic environments as opposed to using lab designed
applications. The VR community at large plays a critical role in
garnering security and ethical concerns regarding widespread VR
usage and encouraging the participation of average consumers in
providing high-assurance behavior-based security measures for VR.
Until VR devices include sensors to collect traditional biometrics,
such as fingerprint, face, and iris, behavior-based mechanisms will be
necessary to provide behavior- and system-independent continuous
authentication. It is also critical to perform translational work to
propagate VR by visiting companies, schools, colleges, and older
adult care facilities to demonstrate how VR applications for office
productivity, education, and health can transform user experience
and quality of life.

8 CONCLUSION

In this work, we address the concern of performing VR identification
and authentication using deep learning with small datasets by evalu-
ating spatial and smoothing methods to pre-process input data. Our
work assesses deep learning methods to perform classification using
convolutional neural networks and matching using Siamese neural
networks. We demonstrate that the inclusion of displacement vectors
in the input data improves the performance of Siamese neural net-
works and N-class networks when compared to baseline approaches.
On average, we observe a 0.63% to 0.73% improvement for 10-fold,
0.55% to 0.85% for 5-fold, and 0.93% to 2.08% for N-class classi-
fication when comparing our work to existing approaches. While
limited impact is obtained using smoothing, the higher identification
success observed for 36 out of 42 combinations of user sets and
VR system pairings indicates the promise of methods that explic-
itly represent spatial relationships in the input. As part of future
research, we are interested in creating VR applications that represent
virtual versions of everyday multi-step activities performed by users,
e.g., working in an office, attending a meeting, visiting the bank,
going to class, and visiting the doctor’s office. Our work will enable
investigation of the usability, acceptability, and security of VR appli-
cations for proliferation of VR to educational, business, consumer,
and mission critical spaces.
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